Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T03:43:23.307Z Has data issue: false hasContentIssue false

Optical guiding of a laser beam in an axially nonuniform plasma channel

Published online by Cambridge University Press:  12 April 2010

Arvinder Singh*
Affiliation:
Department of Physics, National Institute of Technology, Jalandhar, India
Navpreet Singh
Affiliation:
Department of Physics, National Institute of Technology, Jalandhar, India
*
Address correspondence and reprint requests to: Arvinder Singh, Department of Physics, National Institute of Technology, Jalandhar, India. E-mail: [email protected]

Abstract

The guiding of a laser beam in a plasma channel formed by a short laser prepulse is investigated. Due to the self defocusing of an ionizing short laser prepulse, the plasma channel formed is axially nonuniform. When a delayed second laser beam is allowed to propagate through such a preformed plasma channel, convergence and divergence of the beam is observed due to the relative competition of the refraction and diffraction phenomenon. We have solved the wave equation governing the propagation characteristics of an ionizing prepulse and a delayed pulse by the moment theory approach. Results have been compared with the paraxial ray model of Liu and Tripathi (1994). The moment theory predicts the propagation of guided laser beam over several Rayleigh lengths.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phy. Usp. 10, 609.CrossRefGoogle Scholar
Braun, A., Korn, G., Liu, X., Du, D., Squier, J. & Mourou, G. (1995). Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 010073.CrossRefGoogle ScholarPubMed
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tusi, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulse in N2 and He gas targets. Laser Part. Beams. 26, 147155.CrossRefGoogle Scholar
Durfee, C.G. & Milchberg, H.M. (1993). Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409.CrossRefGoogle ScholarPubMed
Esaray, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252.CrossRefGoogle Scholar
Esaray, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE Journal of Quantum Electronics 33, 1879.CrossRefGoogle Scholar
Fibich, G. (1996). Small beam nonparaxiality arrests self focusing of optical beams. Phys. Rev. Lett. 76, 4356.CrossRefGoogle ScholarPubMed
Fontaine, B. La, Vidal, F., Jiang, Z., Chien, C.Y., Comtois, D., Desparois, A., Johnston, T.W., Kieffer, J.C., Pepin, H. & Mercure, H.P. (1999). Filamentation of ultrashort pulse laser beams resulting from their propagation over longdistances in air. Phys. Plasmas 6, 1615.CrossRefGoogle Scholar
Kasparian, J., Rodriguez, M., Mejean, G., Yu, J., Salmon, E., Wille, H., Bourayou, R., Frey, S., Andre, Y.B., Mysyrowicz, A., Sauerbrey, R., Wolf, J.P. & Woste, L. (2003). White-light filaments for atmospheric analysis. Sci. 301, 61.CrossRefGoogle ScholarPubMed
Keldysh, V. (1965). Ionization in the field of strong electromagnetic wave. Sov. Phy. JETP 20, 1307.Google Scholar
Lam, J.F., Lippman, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids. 20, 1176.CrossRefGoogle Scholar
Li, X.F., L'Huillier, A., Feray, M., Lompre, L.A. & Mainfray, G. (1989). Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751.CrossRefGoogle ScholarPubMed
Liu, C.S. & Tripathi, V.K. (1994). Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1, 3100.CrossRefGoogle Scholar
Mackinnon, A.J., Borghesi, M., Gaillard, R., Malka, G., Willi, O., Offenberger, A.A., Pukhov, A. & Meyer-Ter-Vehn, J. (1999). Intense laser pulse propagation and channel formation through plasmas relevant for the fast ignitor scheme.Phys. plasmas 6, 2185.CrossRefGoogle Scholar
Neff, S., Knobloch, R., Hoffmann, D.H.H., Tauschwitz, A. & Yu, S.S. (2006). Transport of heavy-ion beams in a 1 m free-standing plasma channel. Laser Part. Beams 24, 7180.CrossRefGoogle Scholar
Pepin, H., Comtois, D., Vidal, F., Chien, C.Y., Desparois, A., Johnston, T.W., Kieffer, J.C., Fontaine, B. La, Martin, F., Rizk, F.A.M., Potvin, C., Couture, P., Mercure, H.P., Bondiou-Clergerie, A. & Lalande, P. (2001). Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses. Phys. Plasmas 8, 2532.CrossRefGoogle Scholar
Rodriguez, M., Sauerbrey, R., Wille, H., Wostle, L., Fujii, T., Andre, Y.B., Mysyrowicz, A., Klingbeil, L., Rethmeier, K., Kalkner, W., Kasparian, J., Salmon, E., Yu, J. & Wolf, J.P. (2002). Triggering and guiding megavolt discharges by use of laser-induced ionized filaments. Opt. Lett. 27, 772.CrossRefGoogle ScholarPubMed
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics.Volume XIII (edited by Wolf, E.), North Holland, Amsterdam. 13, 171.Google Scholar
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 2146.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas. 1, 1626.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett 43, 267.CrossRefGoogle Scholar
Umstadter, D., Kim, J.K. & Dodd, E. (1996). Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073.CrossRefGoogle ScholarPubMed
Vlasov, S.N., Petrischev, V.A. & Talanov, V.I. (1971). Averaged description of wave beams in linear and nonlinear media (The method of moments). Sov. Radio Phys. Quant. Electron. 14, 1962.Google Scholar
Yang, H., Zhang, J., Yu, W., Li, Y.J. & Wei, Z.Y. (2001). Long plasma channels generated by femtosecond laser pulses in air. Phys. Rev E 65, 016406.CrossRefGoogle Scholar
Yang, H., Zhang, J., Li, Y.J., Chen, Z.L., Teng, H., Wei, Z.Y. & Sheng, Z.M. (2002). Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air. Phys. Rev. E 66, 016406.CrossRefGoogle ScholarPubMed
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar
Zhao, X.M., Yeh, C.Y., Diels, J.C. & Wang, C.Y. (1993). Ultrafast phenomenon VIII. Springer-verlag, Berlin. p. 267.Google Scholar