Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T20:39:58.506Z Has data issue: false hasContentIssue false

On the use of KrF lasers for fast ignition

Published online by Cambridge University Press:  18 September 2008

I.B. Földes*
Affiliation:
KFKI-Research Institute for Particle and Nuclear Physics, Association EURATOM HAS, Budapest, Hungary
S. Szatmári
Affiliation:
University of Szeged, Department of Experimental Physics, Budapest, Hungary
*
Address correspondence and reprint request to: I.B. Földes, KFKI-Research Institute for Particle and Nuclear Physics, Association EURATOM HAS, H-1525 Budapest, P.O. Box 49. Hungary. E-mail: [email protected]

Abstract

The KrF laser has been considered as an inertial fusion driver alternative to diode-pumped lasers. The possibilities of KrF lasers for fast ignition is supported by their short wavelength and the corresponding larger penetration depth together with the possible use of the same amplifiers for fusion driver and fast ignitor. It is shown that in the case of a fusion test facility both the energy and the intensity requirements can be fulfilled. A fast ignitor using 20 ps KrF pulses requires beam smoothing techniques after angular multiplexing due to the coherence of the beam. A multiple beam fast ignitor is suggested as an alternative in which a high number of beams of 1 ps duration are separately focused on the fuel after polarization demultiplexing. This arrangement allows even the pulse-forming of the ignitor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almási, G. & Szatmári, S. (1995). Optimization of multiple-pass off-axis KrF amplifiers. Appl. Phys. B 60, 565570.CrossRefGoogle Scholar
Almási, G., Szatmári, S. & Simon, P. (1992). Optimized operation of short-pulse KrF amplifiers by off-axis amplification. Opt. Commun. 88, 231239.Google Scholar
Atzeni, S. & Tabak, M. (2005). Overview of ignition conditions and gain curves for the fast ignitor. Plasma Phys. Contr. Fusion 47, B769B776.CrossRefGoogle Scholar
Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 33163326.Google Scholar
Békési, J., Marowsky, G., Szatmári, S. & Simon, P. (2001). A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing. Zeitschrift für Physikalische Chemie 215, 15431555.CrossRefGoogle Scholar
Betti, R. & Zhou, C. (2005). High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion. Phys. Plasmas 12, 110702.CrossRefGoogle Scholar
Betti, R. (2007). Fast ignition and shock ignition. IFE Science and Technology Strategic Planning Workshop – Part 2, p. 195225.Google Scholar
Bibi, F.A., Matte, J.P. & Kieffer, J.C. (2004). Fokker-Planck simulations of hot electron transport in solid density plasma. Laser Part. Beams 22, 97102.CrossRefGoogle Scholar
Borisov, A.B., Shirgaev, O.B., McPherson, A., Boyer, K. & Rhodes, C.K. (1995). Stability analysis of relativistic and charge-displacement self-channelling of intense laser pulses in underdense plasmas. Plasma Phys. Contr. Fusion 37, 569597.CrossRefGoogle Scholar
Boyer, K., Borisov, A.B., Song, X., Zhang, P.McCorkindale, J.C., Khan, S.F., Dai, Y., Kepple, P.C., Davis, J. & Rhodes, C.K. (2005). Explosive supersaturated amplification on 3d → 2p Xe( L) hollow atom transitions at λ~2.7–2.9 Å. J. Phys. B 38, 30553069.CrossRefGoogle Scholar
Cela, J.J.L., Piriz, A.R., Moreno, M.C.S. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427435.CrossRefGoogle Scholar
Cottet, F., Romain, J.P., Fabbro, R. & Faral, B. (1984). Ultrahigh-pressure laser-driven shock-wave experiments at 0.26 µm wavelength. Phys. Rev. Lett. 52, 18841886.CrossRefGoogle Scholar
Deutsch, C. & Popoff, R. (2006). Low velocity ion stopping of relevance to the US beam-target program. Laser Part. Beams 24, 421425.CrossRefGoogle Scholar
Deutsch, C. (2003). Fast ignition schemes for inertial confinement fusion. Eur. Phys. J. Appl. Phys. 24, 95113.CrossRefGoogle Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Eliezer, S., Murakami, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Hain, S. & Mulser, P. (2001). Fast ignition without hole boring. Phys. Rev. Lett. 86, 10151018.CrossRefGoogle ScholarPubMed
Hegeler, F., Rose, D.V., Myers, M.C., Sethian, J.D., Giuliani, J.L., Wolford, M.F. & Friedman, M. (2004). Efficient electron beam deposition in the gas cell of the Electra laser. Phys. Plasmas 11, 50105021.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Part. Beams 25, 621629.Google Scholar
Kodama, M., Shiraga, H., Shigemari, K., Toyama, Y., Fujioka, S., Azechi, H., Fujita, H., Habara, H., Hall, T., Izawa, Y., Jitsono, T., Kitagawa, Y., Krushelnick, K.M., Lancaster, K.L., Mima, K., Nagai, K., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P.A., Sakabe, S., Tanaka, K.A., Youssef, A., Zepf, M. & Yamanaka, T. (2002). Nuclear fusion: Fast heating scalable to laser fusion ignition. Nature 418, 933934.CrossRefGoogle ScholarPubMed
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakashi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tonaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle ScholarPubMed
Lancaster, K.L., Green, J.S., Hey, D.S., Akli, K.U., Davies, J.R., Clarke, R.J., Freeman, R.R., Habara, H., Key, M.H., Kodama, R., Krushelnik, K., Murphy, C.D., Nakatsutsumi, M., Simpson, P., Stephens, R., Stoeckl, C., Yabuuchi, T., Zepf, M. & Norrey, P.A. (2007). Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020 W cm−2 Phys. Rev. Lett. 98, 125002.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.CrossRefGoogle Scholar
Manheimer, W. & Colombant, D. (2007). Effects of viscosity in modeling laser fusion implosions. Laser Part. Beams 25, 541547.CrossRefGoogle Scholar
McGeoch, M.W., Corcoran, P.A., Altes, R.G., Smith, I.D., Bodner, S.E., Lehmberg, R.H., Obenschain, S.P. & Sethian, J.D. (1997). Conceptual design of a 2-MJ KrF laser fusion facility. Fusion Techn. 32, 610643.CrossRefGoogle Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Mima 24, 58.Google Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Obenschain, S.P., Bodner, S.E., Colombant, D., Gerber, K., Lehmberg, R.H., McLean, E.A., Mostovych, A.N., Pronko, M.S., Pawley, C.J., Schmitt, A.J., Sethian, J.D., Serlin, V., Stamper, J.A., Sullivan, C.A., Dahlburg, J.P., Gardner, J.H., Chan, Y., Deniz, A.V., Hardgrove, J., Lehecka, T. & Klapisch, M. (1996). The Nike KrF laser facility: Performance and initial target experiments. Phys. Plasmas 3, 20982107.CrossRefGoogle Scholar
Obenschain, S.P., Colombant, D.G., Schmitt, A.J., Sethian, J.D. & McGeoch, M.W. (2006). Pathway to a lower cost high repetition rate ignition facility. Phys. Plasmas 13, 056320.Google Scholar
Payne, S.A., Bibeau, C., Beach, R.J., Bayramian, A., Chanteloup, J.C., Ebbers, C.A., Emanuel, M.A., Nakana, H., Orth, C.D., Rothenberg, J.E., Schaffers, K.I., Seppala, L.G., Skidmore, J.A., Sutton, S.B., Zapata, L.E. & Powell, H.T. (1998). Diode-pumped solid-state lasers for inertial fusion energy. J. Fusion Energy 17, 213217.Google Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 264, 017.CrossRefGoogle ScholarPubMed
Sethian, J.D., Friedman, M., Giuliani, J.L. Jr., Lehmberg, R.H., Obenschain, S.P., Wolford, M., Hegeler, F., Swanekamp, S.B., Weidenheimer, D., Welch, D., Rose, D.V. & Searles, S. (2003). Electron beam pumped KrF lasers for fusion energy. Phys. Plasmas 10, 21422146.CrossRefGoogle Scholar
Sherlock, M., Bell, A.R. & Rozmus, W. (2006). Absorption of ultra-short laser pulses and particle transport in dense targets. Laser Part. Beams 24, 231234.CrossRefGoogle Scholar
Simon, P., Gerhardt, H. & Szatmári, S. (1989). Intensitydependent loss properties of window materials at 248 nm. Opt. Lett. 14, 12071209.CrossRefGoogle Scholar
Someya, T., Miyazawa, K., Kikuchi, T. & Kawata, S. (2006). Direct-indirect mixture implosion in heavy ion fusion. Laser Part. Beams 24, 359369.Google Scholar
Sun, G., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Szatmári, S. (1994). High-brightness ultraviolet excimer lasers. Appl. Phys B 58, 211223.Google Scholar
Szatmári, S., Almási, G., Feuerhake, M. & Simon, P. (1996). Production of intensities of 1019 W/cm2 by a table-top KrF laser. Appl. Phys. B 63, 463466.Google Scholar
Szatmári, S. & Schäfer, F.P. (1987). Comparative study of the gain dynamics of XeCl and KrF with subpicosecond resolution. J. Opt. Soc. Am. B 4, 19431948.CrossRefGoogle Scholar
Szatmári, S. & Simon, P. (1993). Interferometric multiplexing scheme for excimer amplifiers. Opt. Commun. 98, 181192.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W. L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tillemann, M.M. & Jacob, J.H. (1987). Short pulse amplification in the presence of absorption. Appl. Phys. Lett. 50, 121123.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritski, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Scleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Yu., Ustinovski, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar