Published online by Cambridge University Press: 06 March 2006
Starting from the Riemann-Silberstein formulation of classical electrodynamics the Schrödinger equation for the photon energy wave function is discussed. Hereafter, a propagator description of the space-time emission of a polychromatic photon from an atom is presented, paying particular attention to the near-field electrodynamics. When the atom is embedded in a solid-state plasma the photon emission process can be dramatically modified. Limiting the analyses to solid-state plasmas exhibiting translational and rotational symmetry, the near-field atom-photon-plasma interaction is studied paying particular attention to the plasmariton and plasmon excitation processes. It is shown that the transverse and longitudinal parts of the plasma-screened field propagator link in a direct manner to the free-photon propagator and the longitudinal near-field photon propagator. The necessity of keeping both the transverse and longitudinal parts of the plasma screening in a rigorous description of near-field electrodynamics is demonstrated.