Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T19:18:11.843Z Has data issue: false hasContentIssue false

On the inefficiency of hole boring in fast ignition

Published online by Cambridge University Press:  01 June 2004

P. MULSER
Affiliation:
Theoretical Quantum Electronics (TQE), Darmstadt University of Technology, Darmstadt, Germany
R. SCHNEIDER
Affiliation:
Theoretical Quantum Electronics (TQE), Darmstadt University of Technology, Darmstadt, Germany

Abstract

Hole boring and fast ignition seem to exclude each other: When there is hole boring, no ignition occurs, and vice versa. The laser beam pressure only causes a more or less deep cone-shaped critical surface that leads to better guidance of the beam and to improved laser–plasma coupling. At laser wavelengths of the order of 1 μm, successful fast ignition requires strong anomalous laser beam–pellet coupling.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 33163326.Google Scholar
Braginskii, S.I. (1966). Transport processes in plasmas. In Review of Plasma Physics (Leontovich, M.A., Ed.) Vol. 1. New York: Consultants Bureau, p. 209.
Das, A. & Kaw, P. (2001). Non-local sausage-like instability of current channels in electron magnetohydrodynamics. Phys. Plasmas 8, 45184523.Google Scholar
Feurer, T., Theobald, W., Sauerbrey, R., Uschmann, I., Altenbernd, D., Teubner, U., Gibbon, P., Forster, E., Malka, G. & Miquel, J.L. (1997). Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser solid interactions at ultrahigh intensity. Phys. Rev. E 56, 46084614.Google Scholar
Hain, S. (1999). Propagation of Intense Laser Radiation through Matter. Herdecke, Germany: GCA-Verlag (in German); p. 128.
Hain, S. & Mulser, P. (2001). Fast ignition without hole boring. Phys. Rev. Lett. 86, 10151018.Google Scholar
Jain, N., Das, A., Kaw, P. & Sengupta, S. (2003). Nonlinear electron magnetohydrodynamic simulations of sausage-like instability in magnetic channels. Phys. Plasmas 10, 2936.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, Y. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser and Part. Beams 22, 512.Google Scholar
Ruhl, H. (2002). 3D kinetic simulation of super-intense laser-induced anomalous transport. Plasma Sources Sci. Technol. 11, A1A5.Google Scholar
Ruhl, H., Macchi, A., Mulser, P., Cornolti, F. & Hain, S. (1999). Collective dynamics and enhancement of absorption in deformed targets. Phys. Rev. Lett. 82, 20952098.Google Scholar
Sakurai, J.J. (1967). Advanced Quantum Mechanics. Reading, MA: Addison-Wesley Publishing Co. p. 193.
Sentoku, Y., Mima, K., Sheng, Z.M., Kaw, P., Nishihara, K & Nishikawa, K. (2002). Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas. Phys. Rev. E 65, 046408.Google Scholar
Tahraoui, A. & Bendib, A. (2002). Collisional heat flux in laser heated plasmas. Phys. Plasmas 9, 30893097.Google Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic Press, Chap. X.