Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T20:15:58.042Z Has data issue: false hasContentIssue false

On Stark broadening as a tool for diagnostics of high density plasmas

Published online by Cambridge University Press:  30 August 2005

C. STEHLÉ
Affiliation:
Laboratoire de l'Univers et de ses Théories, UMR 8102 du CNRS, Meudon, France
M. BUSQUET
Affiliation:
Laboratoire de l'Univers et de ses Théories, UMR 8102 du CNRS, Meudon, France
D. GILLES
Affiliation:
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France
A.V. DEMURA
Affiliation:
Hydrogen Energy & Plasma Technology Institute, State Research Center of Russian Federation, Moscow, Russia

Abstract

We present the current status-of-the-art in Stark broadening theory as a theoretical basis for diagnostics of low temperature plasmas in gas discharges, and of high temperature laser produced or z-pinch dense plasmas. The diagnostics abilities vary depending on the parameters of the gas discharges, or on the range of intensity, and duration of the laser or z-pinch pulses. In the case of high temperature plasmas, besides the conventional diagnostics based on the Stark broadening, the contemporary possibilities of UV and XUV interferometry for plasma density measurements and of tomography reconstruction of the macroscopic gradients of temperature and densities in laser produced plasmas are discussed.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy

References

REFERENCES

Acon, B.W., Stehlé, C., Zhang, H. & Montaser, A. (2001). Stark-broadened hydrogen line profiles predicted by the model microfield method for calculating electron number densities. Spectr. Chem. Acta, B 56, 527539.Google Scholar
Alexiou, S., Calisti, A., Gauthier, P., Klein, L., Leboucher-Dalimier, E., Lee, R.W., Stamm, R. & Talin, B. (1997). Aspects of Plasma Spectroscopy: Recent Advances. J.Q.S.R.T. 58, 399413.Google Scholar
Anufrienko, A.V., Bulyshev, A.E., Godunov, A.L., Demura, A.V., Zemtsov, Yu.K., Lisitsa, V.S. & Starostin, A.N. (1993). Nonlinear Interference Effects and Ion Dynamics in Kinetic Theory of Stark Broadening of Multiply Charged Ion Spectral Lines in Dense Plasmas. Sov. Phys. JETP 76, 219228.Google Scholar
Boiko, V.A., Vinogradov, A.V., Pikuz, S.A., Skobelev, I.Yu. & Faenov, A.Ya. (1980). X-ray spectroscopy of laser plasmas. In Science and Technique Series, Radiotechnique v. 2, ed. N.G. Basov, VINITI, Moscow (in Russian).
Bailey, J.E., Chandler, G.A., Slutz, S.A., Golovkin, S.A., Lake, P.W., MacFarlane, J.J., Mancini, R.C., Burris-Mog, T.J., Cooper, G., Leeper, R.J., Mehlhorn, T.A, Moore, T.C., Nash, T.J., Nielsen, D.S., Ruiz, C.L., Schroen, D.G. & Varnum, W.A. (2004). Hot Dense Capsule-Implosion Cores Produced by Z-Pinch Dynamic Hohlraum Radiation. Phys. Rev. Lett. 92, 85002-14.Google Scholar
Boercker, D.B., Iglesias, C.A. & Dufty, J.W. (1987). Radiative and transport properties of ions in strongly coupled plasmas. Phys. Rev. 36, 22542264.Google Scholar
Brissaud, A., Goldbach, C., Leorat, J., Mazure, A. & Nollez, G. (1976). On the validity of the model microfield method as applied to Stark broadening of neutral lines. J. Phys. B 9, 11291146; Application of the model microfield method to Stark profiles of overlapping and isolated neutral lines. ibid 11471162.Google Scholar
Busquet, M., Klapisch, M. & Bar-Shalom, A. (2003). Absorption and emission proiles of unresolved arrays near local thermodynamic equilibrium. J.Q.S.R.T. 81, 255263.Google Scholar
Busquet, M., Weaver, J.L., Colombant, D.G., Mostovych, A.N., Feldman, U., Klapisch, M., Seely, J.F. & Holland, G. (2004). Absolute x-ray emission of CH plasma created with the Nike laser. In Spectral Line Shapes (E. Dalimier, Ed.), pp. 246253. Paris: Frontier Group.
Cai, M.X., Ishii, I., Clifford, R.H., Montaser, A., Palmer, B.A. & Layman, L.R. (1994). Fundamental properties of helium inductively coupled plasmas measured by high-resolution Fourier transform spectrometry. Spectrochim. Acta B 49, 10811095.Google Scholar
Chambers, D.M., Pinto, P.A., Hawreliak, J., Al'Miev, I.R., Gouveia, A., Sondhauss, P., Wolfrum, E., Wark, J.S., Glenzer, S.H., Lee, R.W., Young, P.E., Renner, O., Marjoribanks, R.S. & Topping, S. (2002). K-shell spectroscopy of an independently diagnosed uniaxially expanding laser-produced aluminum plasma. Phys. Rev. E 66, 026410-116.Google Scholar
Demura, A.V. & Sholin, G.V. (1975). Theory of Hydrogen Lines Stark Profiles Asymmetry in Dense Plasmas. J.Q.S.R.T. 15, 881899.Google Scholar
Demura, A.V., Gilles, D. & Stehlé, C. (1995). Comparative Study of Microfield Nonuniformity in Plasmas. J.Q.S.R.T. 54, 123136.Google Scholar
Demura, A.V. & Gilles, D. (2004). Overview of Plasma Microfield in Stark Broadening of Spectral Lines. In Spectral Line Shapes (E. Dalimier, Ed.), pp. 121128. Paris: Frontier Group.
Ferri, S., Calisti, A., Mosse, C. & Talin, B. (2004). Correlation Effects in Warm and dense Plasmas: Influence of Electron Broadening on Hydrogen Lines. In Spectral Line Shapes (E. Dalimier, Ed.), pp. 454456. Paris: Frontier Group.
Frisch, U. & Brissaud, A. (1971). Theory of Stark broadening—I. Soluble scalar model as a test. J.Q.S.R.T. 11, 17531756; Theory of Stark broadening—II. Exact line profile with model microfields. ibid 17671783.Google Scholar
Fujimoto, T. & Kazansky, S.A. (1997). Plasma polarization spectroscopy. Plasma Phys. Control. Fusion 39, 12671294.Google Scholar
Gasparian, P.D., Gerasimov, V.M., Sratostin, A.N., Suvorov, A.E. (1994). Effect of plasma microfields on the gain of hydrogen-like ions with photoresonant pumping. Zh. Exp. i Teor. Fiziki 105, 15931605 (1994. JETP 78, 858).Google Scholar
Gigosos, M.A. & Cardenoso, V. (1996). New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics. J. Phys. B 29, 47954838.Google Scholar
Gigosos, M.A., Gonzalez, M.A. & Cardenoso, V. (2003). Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochimica Acta Part B 58, 14891504.Google Scholar
Gilles, D. (1990). Analytical fit of MonteCarlo distribution s of the electric microfield in a plasma. Ann. Phys. Colloq. France 15, C3, 8587Google Scholar
Gilles, D. & Stehlé, C. (1994). Application of the Model Microfield Method to the Stark Broadening of Ions. Laser Part. Beams 12, 413420.Google Scholar
Gilles, D. & Stehlé, C. (1995). Line Shapes of Multiply-charged Ions: Ion Dynamics and Concentration Effects. J. Phys. II France 5, 7592.Google Scholar
Golovkin, I., Mancini, R.C., Louis, S., Ochi, Y., Fujita, K., Nishimura, H., Shirga, H., Miyanaga, N., Azechi, H., Butzbach, R., Uschmann, I., Föerster, E., Delettrez, J., Koch, J., Lee, R.W. & Klein, L. (2002). Spectroscopic Determination of Dynamic Gradients in Implosion Cores. Phys. Rev. Lett. 88, 04502-14.Google Scholar
Gouveia, A., Al'miev, I.R., Hawreliak, J., Chambers, D.M., Liang, T., Marjoribanks, R., Pinro, P.A., Renner, O., Zhang, J. & Wark, J.S. (2003). Absorption spectroscopy of Al XIII Ly-α radiation by an Fe XXIV plasma. J.Q.S.R.T. 81, 199207.Google Scholar
Griem, H.R. (1974). Spectral Line Broadening by Plasmas. New York: Academic Press.
Grützmacher, K. & Wende, B. (1977). Discrepancies between the Stark broadening theories of hydrogen and measurements of Ly-α Stark profiles in a dense equilibrium plasmas. Phys. Rev. A 16, 243246.Google Scholar
Hakel, P., Mancini, R.C., Gauthier, J.-C., Minguez, E., Dubau, J. & Cornille, M. (2004). X-ray line polarization of He-like Si satellite spectra in plasmas driven by high-intensity ultrashort pulsed lasers. Phys. Rev. E 69, 056405-1-11.Google Scholar
Hammarsten, E.C., Szapiro, B., Jankowska, E., Filevich, J., Marconi, M.C. & Rocca, J.J. (2004). Soft X-ray laser diagnostics of exploding aluminum wire plasmas. Appl. Phys. B 78, 933937.Google Scholar
Hasegawa, J., Yokoya, N., Kobayashi, Y, Yoshida, M., Kojima, M., Sasaki, T., Fukuda, H., Ogawa, M., Oguri, Y. & Murakami, T. (2003). Stopping power of dense helium plasma for fast heavy ions. Laser Part. Beams 21, 711.Google Scholar
Holtsmark, J. (1919). The broadening of spectral lines. Ann. Physik 58, 577630.Google Scholar
Iglesias, C.A., Rogers, F.J., Shepherd, R., Bar-Shalom, A., Murillo, M.S., Kilcrease, D.P., Calisti, A. & Lee, R.W. (2000). Fast electric microfield distribution calculations in extreme matter conditions. J.Q.S.R.T. 65, 303315.Google Scholar
Inglis, D.R. & Teller, E. (1939). Ionic Depression of Series Limits in One-Electron Spectra. Astroph. J. 90, 439448.Google Scholar
Kepple, P. & Griem, H.R. (1968). Improved Stark Profile Calculations for the Hydrogen Lines Hα, Hβ, Hγ, and Hδ. Phys. Rev. 173, 317325.Google Scholar
Kilcrease, D.P., Mancini, R.C. & Hooper, C.F., Jr. (1993). Ionic broadening of dense plasma spectral lines including field-dependent atomic physics and the ion quadrupole interaction. Phys. Rev E 48, 39013913.Google Scholar
Koenig, M., Malnoult, Ph. & Nguyen, H. (1988). Atomic structure and line broadening of He-like ions in hot and dense plasmas. Phys. Rev. A 38, 20892098.Google Scholar
Kosarev, I.N., Stehlé, C., Feautrier, N., Demura, A.V. & Lisitsa, V.S. (1997). Interference of radiating states and ion dynamics in spectral line broadening. J. Phys. B. At. Mol. Phys. 30, 215236.Google Scholar
Langer, S.H., Scott, H.A., Marinak, M.M. & Landen, O.L. (2003). Comparisons of line emission from 2- and 3-dimensional simulations of ICF capsules to experiments. J.Q.S.R.T. 81, 275286.Google Scholar
Leboucher-Dalimier, E., Sauvan, P., Angelo, P., Poquérusse, A., Schott, R., Dufour, E., Minguez, E. & Calisti, A. (2001). Observation of ion-ion correlation effects on emissivity and opacity of hot ultra-dense low Z plasmas. J.Q.S.R.T. 71, 493504.Google Scholar
Loboda, P.A., Litvinenko, I.A., Baydin, G.V., Popova, V.V. & Koltchugin, S.V. (2000). Line shape modeling of multielectron ions in plasmas. Laser Part. Beams 18, 275289.Google Scholar
Magunov, A.I., Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B. Yu. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Mathys, G., Stehlé, C., Brillant, S. & Lanz, T. (2000). The physical foundations of stellar magnetic field diagnosis from polarimetric observations of hydrogen lines. Astron. Astrophys. 358, 11511156.Google Scholar
Nguyen, H., Koenig, M., Benredjem, D., Caby, M. & Coulaud, G. (1986). Atomic structure and polarization line shift in dense and hot plasmas. Phys. Rev. A 33, 12791290.Google Scholar
Oks, E. (1995). Plasma Spectroscopy: The Influence of Microwave and Laser Fields. New York: Springer.
Politov, V.Yu., Potapov, A.V. & Antonova, L.V. (2000). About diagnostics of Z-pinches hot points. Laser Part. Beams 18, 291296.Google Scholar
Potekhin, A.Y., Chabrier, G. & Gilles, D. (2002). Electric microfield distributions in electron-ion plasmas. Phys. Rev. E 65, 036412-1-12.Google Scholar
Rautian, S.G. & Shalagin, A.M. (1991). Kinetic Problems of Non-Linear Spectroscopy. New York: North Holland.
Regan, S.P., Delettrez, J.A., Marshall, F.J., Soures, J.M., Smalyuk, V.A., Yaakobi, B.R., Epstein, R., Glebov, V.Yu, Jaanimagi, P.A., Meyerhofer, D.D., Radha, P.B., Sangster, T.C., Seka, W., Skupsky, S., Stoeckl, C., Town, R.P.J., Haynes, D.A., Jr., Golovkin, I.E., Hooper, C.F., Jr., Frenje, J.A., Li, C.K., Petrasso, R.D. & Seguin, F.H (2002). Shell Mix in the Compressed Core of Spherical Implosions. Phys. Rev. Lett. 89, 085003-1-4.Google Scholar
Renner, O., Limpouch, J., Krousky, E., Uschmann, I. & Föerster, E. (2003). Spectroscopic characterization of plasma densities of laser-irradiated Al foils. J.Q.S.R.T. 81, 385394.Google Scholar
Rosmej, F.B., Calisti, A., Stamm, R., Talin, B., Moss, C., Ferri, S., Geibel, M, Hofmann, D.H.H., Faenov, A.Ya. & Pikuz, T.A. (2003). Strongly coupled laser produced plasmas: investigation of hollow ion formation and line shape analysis. J.Q.S.R.T. 81, 395409.Google Scholar
Seidel, J. (1977). Hydrogen Stark Broadening by Model Electronic Microfields. Z. für Naturforschung 32a, 11951206; Effects of Ion Motion on Hydrogen Stark Profiles. ibid 12071214.Google Scholar
Stamm, R., Pollock, E.L., Talin, B. & Iglesias, C.A. (1986). Ion dynamics effects on the line shapes of hydrogenic emitters in plasmas. Phys. Rev. A 34, 41444152.Google Scholar
Stehlé, C. (1990). What means low or high densities for Stark broadening of hydrogenic ions lines? J.Q.S.R.T 44, 135142.Google Scholar
Stehlé, C. & Hutcheon, R. (1999). Extensive tabulations of Stark broadened hydrogen line profiles. Astron. Astrophys. Suppl. Ser. 140, 9397.Google Scholar
Stehlé, C., Gilles, D. & Demura, A.V. (2000). Asymmetry of Stark profiles: The microfield point of view. Eur. Phys. J. D 12, 355367.Google Scholar
Stygar, W.A., Ives, H.C., Fehl, D.L., Cuneo, M.E., Mazarakis, M.G., Bailey, J.E., Bennett, G.R., Bliss, D.E., Chandler, G.A., Leeper, R.J., Matzen, M.K., McDaniel, D.H., McGurn, J.S., McKenney, J.L., Mix, L.P., Muron, D.J., Porter, J.L., Ramirez, J.J., Ruggles, L.E., Seamen, J.F., Simpson, W.W., Speas, C.S., Spielman, R.B., Struve, K.W., Torres, J.A., Vesey, R.A., Wagoner, T.C., Gilliland, T.L., Horry, M.L., Jobe, D.O., Lazier, S.E., Mills, J.A., Mulville, T.D., Pyle, J.H., Romero, T.M., Seamen, J.J. & Smelser, R.M. (2004). X-ray emission from z pinches at 107 A: Current scaling, gap closure, and shot-to-shot fluctuations. Phys. Rev. E 69, 046403-1-20.Google Scholar
Talin, B., Calisti, A., Godbert, L., Stamm, R., Lee, R.W. & Klein, L. (1995). Frequency-fluctuation model for line-shape calculations in plasma spectroscopy. Phys. Rev. A 51, 19171928.Google Scholar
Talin, B., Dufour, E., Calisti, A., Gigosos, M.A., Gonzalez, M.A., Del Rio Gaztelurrutia, T. & Dufty, J.W. (2003). Molecular dynamics simulation for modelling plasma spectroscopy. J. Phys. A 36, 60496056.Google Scholar
Underhill, A.B. & Waddell, J.H. (1959). Stark Broadening Functions for the Hydrogen Lines. NBS Circular 603.
Vinogradov, A.V., Sobelman, I.I. & Yukov, E.A. (1974). On Spectroscopic Methods for Superdense Hot Plasmas Diagnostics. Quantum Electronics 1, 268 (in Russian).Google Scholar
Vidal, C.R., Cooper, J. & Smith, E.W. (1973). Hydrogen Stark-Broadening Tables. Astrophys. J. Suppl. Ser. 25, 37136.Google Scholar
Welser, L.A., Mancini, R.C., Koch, J.A., Izumi, N., Dalhed, H., Scott, H., Barbee, T.W., Jr., Lee, R.W., Golovkin, I.E., Marshall, F., Delettrez, J. & Klein, L. (2003). Analysis of the spatial structure of inertial confinement fusion implosion cores at OMEGA. J.Q.S.R.T. 81, 487497.Google Scholar
Woolsey, N.C., Hammel, B.A., Keane, C.J., Back, C.A., Moreno, J.C., Nash, J.K., Calisti, A., Mossé, C., Godbert, L., Stamm, R., Talin, B., Hopper, C.F., Jr., Asfaw, A., Klein, L. & Lee, R.W. (1997). Evolution of electron temperature and electron density in indirectly driven spherical implosions. Phys. Rev. E 56, 23142317.Google Scholar
Ying, M.J., Xia, Y.Y., Sun, Y.M., Zhao, M.W., Ma, Y.C., Liu, X.D., Li, Y.F. & Hou, X.Y. (2003). Plasma properties of a laser-ablated aluminum target in air. Laser Part. Beams 21, 97101.Google Scholar
Zeitoun, P., Balcou, P., Bucourt, S., Delmotte, F., Dovillaire, G., Douillet, D., Dunn, J., Faivre, G., Fajardo, M., Goldberg, K.A., Hubert, S., Hunter, J.R., Idir, M., Jacquemot, S., Kazamias, S., Le Pape, S., Levecq, X., Lewis, C.L.S., Marmoret, R., Merceren, P., Morlens, A.S., Naulleau, P.P., Ravet, M.F., Remond, C., Rocca, J.J., Smith, R.F., Troussel, P., Valentin, C. & Vanbostal, L. (2004). Recent developments in X-UV optics and X-UV diagnostics. Appl. Phys. B 78, 983988.Google Scholar