Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T06:14:57.881Z Has data issue: false hasContentIssue false

Observation of repetitive bursts in emission of fast ions and neutrons in sub-nanosecond laser-solid experiments

Published online by Cambridge University Press:  18 June 2013

J. Krása*
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
D. Klír
Affiliation:
Czech Technical University, Prague, Czech Republic
A. Velyhan
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
D. Margarone
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
E. Krouský
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
K. Jungwirth
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
J. Skála
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics AS CR, Prague, Czech Republic
J. Kravárik
Affiliation:
Czech Technical University, Prague, Czech Republic
P. Kubeš
Affiliation:
Czech Technical University, Prague, Czech Republic
K. Řezáč
Affiliation:
Czech Technical University, Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics AS CR, Prague, Czech Republic
*
Address correspondence and reprint requests to: J. Krása, Institute of Physics AS CR, Prague, Czech Republic. E-mail: [email protected]

Abstract

A massive deuterated polyethylene target was exposed to laser intensities of about 3 × 1016 W/cm2 employing the 3-TW Prague Asterix Laser System (PALS). We achieved a yield of 2 × 108 neutrons per laser shot. Average time-of-flight signals of scintillation detectors operated in current mode reveal broad energy spectra of fusion neutrons with dominating energy of about 2.45 MeV. The energy dependence of the neutron yield shows a consistency in results of nanosecond, picosecond and sub-picosecond experiments. Here we also show that ions emitted in the backward direction from the front target surface have a multi-peak energy spectrum, which is caused by burst emission mechanisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belyaev, V. S., Vinogradov, V. I., Kurilov, A. S., Matafonov, A. P., Andrianov, V. P., Ignat'ev, G. N., Faenov, A. Ya., Pikuz, T. A., Skobelev, I. Yu., Magunovc, A. I., Pikuz, S. A. Jr. & Sharkov, B. Yu. (2004). Neutron production in a picosecond laser plasma at a radiation intensity of 3 × 1017 W/cm2. JETP. 98, 11331137.CrossRefGoogle Scholar
Belyaev, V. S., Vinogradov, V. I., Matafonov, A. P., Krainov, V. P., Lisitsa, V. S., Andrianov, V. P. & Ignatyev, G. N. (2006). Effect of prepulses with various durations on the neutron yield in laser picosecond plasma. Laser Phys. 16, 16471657.CrossRefGoogle Scholar
Bessarab, A. V., Gaidash, V. A., Dolgoleva, G. V., Zhidkov, N. V., Izgorodin, V. M., Kirillov, G. A., Kochemasov, G. G., Kunin, A. V., Litvin, D. N., Murugov, V. M., Nasyrov, G. F., Punin, V.T., Rogachev, V. G., Senik, A. V., Suslov, N. A., Tachaev, G. V. & Shemyakin, V. I. (1992). Results of first experiments with fusion targets at the Iskra-5 high-power laser installation. Sov. Phys. JETP. 75, 970973.Google Scholar
Brysk, H. (1973). Fusion neutron energies and spectra. Plasma Phys. 15, 611617.CrossRefGoogle Scholar
Clark, E. L., Krushelnick, K., Zepf, M., Beg, F. N., Tatarakis, M., Machacek, A., Santala, M. I. K., Watts, I., Norreys, P. A. & Dangor, A. E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.CrossRefGoogle ScholarPubMed
Davis, J. & Petrov, G. M. (2008). Angular distribution of neutrons from high-intensity laser-target interactions. Plasma Phys. Control. Fusion. 50, 065016.CrossRefGoogle Scholar
Flippo, K., Bartal, T., Beg, F., Chawla, S., Cobble, J., Gaillard, S., Hey, D., MacKinnon, A., MacPhee, A., Nilson, P., Offermann, D., Le Pape, S. & Schmitt, M. J. (2010). Omega EP, laser scalings and the 60 MeV barrier: first observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime. J. Phys.: Conf. Ser. 244, 022033.Google Scholar
Fritzler, S., Najmudin, Z., Malka, V., Krushelnick, K., Marle, C., Walton, B., Wei, M. S., Clarke, R. J. & Dangor, A. E. (2002). Ion heating and thermonuclear neutron production from high-intensity subpicosecond laser pulses interacting with underdense plasmas. Phys. Rev. Lett. 89, 165004.CrossRefGoogle ScholarPubMed
Habara, H., Lancaster, K. L., Karsch, S., Murphy, C. D., Norreys, P. A., Evans, R. G. M., Borghesi, M., Romagnani, L., Zepf, M., Norimatsu, T., Toyama, Y., Kodama, R., King, J. A., Snavely, R., Akli, K., Zhang, B., Freeman, R., Hatchett, S., MacKinnon, A.J., Patel, P., Key, M. H., Stoeckl, C., Stephens, R. B., Fonseca, R. A. & Silva, L. O. (2004). Ion acceleration from the shock front induced by hole boring in ultraintense laser-plasma interactions. Phys. Rev. E 70, 046414.CrossRefGoogle ScholarPubMed
Hilscher, D., Berndt, O., Enke, M., Jahnke, U., Nickles, P. V., Ruhl, H. & Sandner, W. (2001). Neutron energy spectra from the laser-induced D(d,n)3He reaction. Phys. Rev. E 64, 016414.CrossRefGoogle ScholarPubMed
Ivanova-Stanik, I.M. & Miklaszewski, R. (2009). Monte Carlo method for neutron spectrum recovery − a new approach based on the accelerated ions distribution. Eur. Phys. J. D 54, 293297.CrossRefGoogle Scholar
Izumi, N., Sentoku, Y., Habara, H., Takahashi, K., Ohtani, F., Sonomoto, T., Kodama, R., Norimatsu, T., Fujita, H., Kitagawa, Y., Mima, K., Tanaka, K. A. & Yamanaka, T. (2002). Observation of neutron spectrum produced by fast deuterons via ultraintense laser plasma interactions. Phys. Rev. E 65, 036413.CrossRefGoogle ScholarPubMed
Jungwirth, K., Cejnarová, A., Juha, L., Králiková, B., Krása, J., Krouský, E., Krupičková, P., Láska, L., Mašek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skála, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System PALS. Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Klir, D., Kravarik, J., Kubes, P., Rezac, K., Litseva, E., Tomaszewski, K., Karpinski, L., Paduch, M. & Scholz, M. (2011). Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments. Rev. Sci. Instrum. 82, 033505.CrossRefGoogle ScholarPubMed
Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M. & Ullschmied, J. (2009). Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma. Laser Part. Beams 27, 241248.CrossRefGoogle Scholar
Krása, J. (2013). Gaussian energy distribution of fast ions emitted by laser-produced plasmas. Appl. Surf. Sci. 272, 4649.CrossRefGoogle Scholar
Krushelnick, K., Najmudin, Z. & Dangor, A.E. (2007). Particle acceleration using intense laser produced plasmas. Laser Phys. Lett. 4, 847862.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., WoLowski, J., Gammino, S., Torrisi, L., & Boody, F. P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.CrossRefGoogle Scholar
Láska, L., Cavallaro, S., Jungwirth, K., Krása, J., Krouský, E., Margarone, D., Mezzasalma, A., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Verona-Rinati, G. (2009). Experimental studies of emission of highly charged Au-ions and of X-rays from the laser-produced plasma at high laser intensities. Eur. Phys. J. 54, 487492.Google Scholar
Lee, S., Park, S., Yea, K-H. & Know, D-H. (2009). Efficient fast neutron generation in a femtosecond, deuterated polystyrene plasma. J. Korean Phys. Soc. 55, 543548.CrossRefGoogle Scholar
Luther-Davies, B.& Rode, A. V. (1993). Pulsation of harmonic and Kα emission from laser-produced plasmas. Phys. Rev. E 47, 27782784.CrossRefGoogle Scholar
Madison, K. W., Patel, P. K., Allen, M., Price, D., Fitzpatrick, R. & Ditmire, T. (2004). Role of laser-pulse duration in the neutron yield of deuterium cluster targets. Phys. Rev. A 70, 053201.CrossRefGoogle Scholar
Margarone, D., Krása, J., Giuffrida, L., Picciotto, A., Torrisi, L., Nowak, T., Musumeci, P., Velyhan, A., Prokůpek, J., Láska, L., Mocek, T., Ullschmied, J. & Rus, B. (2011). Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys. 109, 103302.CrossRefGoogle Scholar
Norreys, P. A., Fews, A. P., Beg, F. N., Bell, A. R., Dangor, A. E., Lee, P., Nelson, M. B., Schmidt, H., Tatarakis, M. & Cable, M. D. (1998). Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W cm−2. Plasma Phys. Contr. Fusion 40, 175182.CrossRefGoogle Scholar
Norreys, P. A., Lancaster, K. L., Habara, H., Davies, J. R., Mendonca, J. T., Clarke, R. J., Dromey, B., Gopal, A., Karsch, S., Kodama, R., Krushelnick, K., Moustaizis, S. D., Stoeckl, C., Tatarakis, M., Tampo, M., Vakakis, N., Wei, M. S. & Zepf, M. (2005). Observation of ion temperatures exceeding background electron temperatures in petawatt laser-solid experiments. Plasma Phys. Control. Fusion 47, L49L56.CrossRefGoogle Scholar
Picciotto, A., Margarone, D., Bellutti, P., Colpo, S., Torrisi, L., Krasa, J., Velyhan, A. & Ullschmied, J. (2011). Microfabrication of silicon hydrogenated thin targets for multi-MeV laser-driven proton acceleration. Appl. Phys. Express 4, 126401.CrossRefGoogle Scholar
Pretzler, G., Saemann, A., Pukhov, A., Rudolph, D., Schätz, T., Schramm, U., Thirolf, P., Habs, D. K., Eidmann, K., Tsakiris, G. D., Meyer-ter-Vehn, J. & Witte, K. J. (1998). Neutron production by 200 mJ ultrashort laser pulses. Phys.Rev. E 58, 11651168.CrossRefGoogle Scholar
Rezac, K., Klir, D., Kubes, P. & Kravarik, J. (2012). Improvement of time-of-flight methods for reconstruction of neutron energy spectra from D(d,n)3He fusion reactions. Plasma Phys. Control. Fusion 54, 105011.CrossRefGoogle Scholar
Tan, T. H., McCall, G. H. & Williams, A. H. (1984). Determination of laser intensity and hot-electron temperature from fastest ion velocity measurement on laser-produced plasma. Phys. Fluids 27, 296301.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnürer, M., Hilscher, D., Jahnke, U., Busch, S., Nickles, P. V. & Sandner, W. (2005). Fusion neutron yield from a laser-irradiated heavy-water spray. Phys. Plasmas. 12, 012702.CrossRefGoogle Scholar
Toupin, C., Lefebvre, E. & Bonnaud, G. (2001). Neutron emission from a deuterated solid target irradiated by an ultraintense laser pulse. Phys. Plasmas 8, 10111021.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Wolle, B. (1999). Tokamak plasma diagnostics based on measured neutron signals. Phys. Reports 312, 186.CrossRefGoogle Scholar
Young, P. E., Hammer, J. H., Wilks, S. C. & Kruer, W. L. (1995). Laser beam propagation and channel formation in underdense plasmas. Phys. Plasma 2, 28252834.CrossRefGoogle Scholar
Youssef, A., Kodama, R., Habara, H., Tanaka, K. A., Sentoku, Y., Tampo, M. & Toyama, Y. (2005). Broad-range neutron spectra identification in ultraintense laser interactions with carbon-deuterated plasma. Phys. Plasmas 12, 110703.CrossRefGoogle Scholar
Youssef, A. (2013). Neutron yields of nuclear reactions induced by ion acceleration in carbon-deuterated plasma produced by ultra-intense lasers. Phys. Scr. 87, 015501.CrossRefGoogle Scholar