Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T16:47:41.007Z Has data issue: false hasContentIssue false

Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model

Published online by Cambridge University Press:  19 March 2009

R. Sadighi-Bonabi*
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
H.A. Navid
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
P. Zobdeh
Affiliation:
Department of Physics, Amirkabir University of Technology, Tehran, Iran
*
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, 11365-9567, Tehran, Iran. E-mail: [email protected]

Abstract

In this work, we introduce a new ellipsoid model to describe bubble acceleration of electrons and discuss the required conditions of forming it. We have found that the electron trajectory is strongly related to background electron energy and cavity potential ratio. In the ellipsoid cavity regime, the quality of the electron beam is improved in contrast to other methods, such as that using periodic plasma wakefield, spherical cavity regime, and plasma channel guided acceleration. The trajectory of the electron motion can be described as hyperbola, parabola, or ellipsoid path. It is influenced by the position and energy of the electrons and the electrostatic potential of the cavity. In the experimental part of this work, a 20 TW power and 30 fs laser pulse was focused on a pulsed He gas jet. We have focused the laser pulse in the best matched point above the nozzle gas to obtain a stable ellipsoid bubble. The finding of the optimum points will be described in analytical details.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amthor, K.-U. (2006). Laser plasma accelerators for charged particles. Ph.D. Thesis. Jena, Germany: Friedrich- Schiller-Universitaet Jena.Google Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Esarey, E., Krall, J. & Sprangle, P. (1994). Envelope analysis of intense laser pulse self-modulation in plasmas. Phys. Rev. Lett. 72, 28872890.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V.A. (2004). Laser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernández, J.C. (2007). Laser-driven ion accelerators: spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, C.S., Van Tilborg, J., Esarey, E., Schroeder, C.B., Cary, J. & Leemans, W.P. (2005). Guiding of Relativistic Laser Pulses by Preformed Plasma Channels. Phys. Rev. Lett. 95, 145002/1–4.CrossRefGoogle ScholarPubMed
Gerestener, E. (2007). Physicists are planning lasers powerful enough to rip apart the fabric of space and time. Nat. 446, 1618.Google Scholar
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter, An Introduction. London: Imperial College Press.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Gordienko, S. & Pukhov, A. (2005). Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109/1-11.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B., Cobble, J., Flippo, K., Johnson, R., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R. & Fernandez, J.C. (2006). Mono-energetic multi-mev0nucleon ion beams accelerated by ultrahigh intensity lasers. Nat. 439, 441444.CrossRefGoogle Scholar
Hemker, R.G., Hafz, N.M. & Uesaka, M. (2002). Computer simulations of a single-laser double-gas-jet wakefield accelerator concept. Phys. Rev. St Accel. Beams 5, 041301/1-8.CrossRefGoogle Scholar
Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G. & Sauerbrey, R. (2006). Generation of quasimono-energetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96, 105004/1-4.CrossRefGoogle ScholarPubMed
Hosokai, T., Kinoshita, K., Ohkubo, T., Maekawa, A., Uesaka, M., Zhidkov, A., Yamazaki, A., Kotaki, H., Kando, M., Nakajima, K., Bulanov, S.V., Tomassini, P., Giulietti, A. & Giuliett, D. (2006). Observation of strong correlation between quasimonoenergetic electron beam generations by laser wakefield and laser guiding inside a preplasma cavity. Phys. Lett. Rev. E 73, 036407/1-8.Google ScholarPubMed
Hutchinson, I. (1987). Principles of Plasma Diagnostics. Cambridge: Cambridge University Press.Google Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kostyukov, I., Pukhov, A. & Kiselev, S. (2004). Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas 11, 52565264.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, C.S., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.M., Burgy, F., Chambaret, J.P., Chemin, J.F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.P., Scheurer, J.N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wakefield forced by an intense ultrashort laser pulse. Sci. 298, 15961600.CrossRefGoogle Scholar
Malka, V., Lifschitz, A., Faure, J. & Glinec, Y. (2006). Staged concept of laser-plasma acceleration toward multi-GeV electron beams. Phys. Rev. Spe.Top. Acce. Beams 9, 091301/1-10.Google Scholar
Mangles, S.P.D., Thomas, A.G.R., Kaluza, M.C., Lundh, O., Lindau, F., Persson, A., Tsung, F.S., Najmudin, Z., Mori, W.B., Wahlstro, C.-G. & Krushelnick, K. (2006). Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. Phys. Rev. Lett. 96, 215001/1-4.CrossRefGoogle ScholarPubMed
Marion, J.B. & Thornton, S.T. (1998). Classical Dynamics of Particles and Systems. Third Edition.New York: H.B.Jovanovich Pub.Google Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilcher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Pukhov, A. & Meyer-Ter Vehn, J. (2002). Laser wakefield acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.CrossRefGoogle Scholar
Pukhov, A., Gordienko, S., Kiselev, S. & Kostyukov, I. (2004). The bubble regime of laser–plasma acceleration: Monoenergetic electrons and the scalability. Plasma Phys. Contr. Fusion 46, B179B186.CrossRefGoogle Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., Mccanny, T., Mora, P., Neely, D., Wahlstro, C.-G., Zepf, M.M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nat. Phys. 3, 5862.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultraintense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Ruhl, H., Cowan, T. & Pegoraro, F. (2006). The generation of images of surface structures by laser-accelerated protons. Laser Part. Beams 24, 181184.CrossRefGoogle Scholar
Sadighi-Bonabi, R. & Kokabee, O. (2006). Evaluation of transmutation of 137Cs(γ, n)136Cs using ultra-intense laser in solid targets. Chin. Phys. Lett. 6, 14341436.CrossRefGoogle Scholar
Sadighi-Bonabi, R. & Zobdeh, P. (2008). Observation of quasi mono-energetic electron bunches in new ellipsoid cavity model. In European Conference on Laser Interaction with Matter ProceedingsDarmstadt, Germany: GSI.Google Scholar
Tanaka, K.A., Yabuuchi, T., Sato, T., Kodama, R., Kitagawa, Y., Takahashi, T., Ikeda, T., Honda, Y. & Okuda, S. (2005). Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Inst. 76, 013507/1-5.CrossRefGoogle Scholar
Tomassini, P., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Labate, L. & Pegoraro, F. (2004). Laser wakefield acceleration with controlled self-injection by sharp density transition. Laser Part. Beams 22, 423429.CrossRefGoogle Scholar
Umstadter, D. (2003). Relativistic laser–plasma interactions. J. Phys. D: Appl. Phys. 36, R151R165.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernndez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2009 a). Cavity generation and effect of self-focusing in laser-plasma interaction. Phys. Part. Nucl. In press.CrossRefGoogle Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2009 b). Electron trajectory evaluation in laser-plasma interaction for effective output beam. China Phys. B. In press.Google Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2008 c). New ellipsoid cavity model in the high intense laser-plasma interaction. Plasma Dev. Operat. 16, 105114.CrossRefGoogle Scholar
Zobdeh, P., Sadighi-Bonabi, R., Afarideh, H., Yazdani, E. & Rezaei Nasirabad, R. (2008 d). Using the steepened plasma profile and wave breaking threshold in laser-plasma interaction. Contrib. Plasma Phys. 48, 555560.CrossRefGoogle Scholar