Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T16:45:03.743Z Has data issue: false hasContentIssue false

Observation and interpretation of neutron origin prior to hard X rays and pinch in a hundred joules plasma focus device

Published online by Cambridge University Press:  26 October 2017

J. Jain*
Affiliation:
Universidad de Talca, Talca, Chile Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile
J. Moreno
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago, Chile
D. Morales
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile
S. Davis
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago, Chile
B. Bora
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago, Chile
G. Avaria
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
M.J. Inestrosa-Izurieta
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago, Chile
L. Soto*
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago, Chile
*
Address correspondence and reprint requests to: J. Jain and L. Soto, Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile. E-mail: [email protected] and [email protected]
Address correspondence and reprint requests to: J. Jain and L. Soto, Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile. E-mail: [email protected] and [email protected]

Abstract

The temporal correlation between neutron and hard X-ray (HXR) emissions from a hundred joules plasma focus device (PF-400J) was studied. A method, time history analysis, to estimate the time of origin of neutrons with respect to HXRs is applied. In most of the discharges, it was found that neutrons are originated before HXRs in the axial direction and after HXRs in the radial direction. In some discharges, the time difference between HXRs and neutrons origin was found large enough, so that it can be interpreted that those neutrons would have been originated before the pinch. A qualitative discussion is conjectured to explain the experimental observations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbaglia, M., Bruzzone, H., Acuña, H., Soto, L. & Clausse, A. (2009). Experimental study of the hard x-ray emissions in a plasma focus of hundreds of Joules. Plasma Physics and Controlled Fusion 51, 045001 (9pp).Google Scholar
Barbaglia, M., Soto, L. & Clausse, A. (2012). Dependence of hard X-ray emissions with the charging pressure in a small plasma focus. Journal of Fusion Energy 31, 105108.Google Scholar
Bhuyan, H., Chuaqui, H., Favre, M., Mitchell, I. & Wyndham, E. (2005). Ion beam emission in a low energy plasma focus device operating with methane. Journal of Physics D: Applied Physics 38, 1164 (6pp).Google Scholar
Castillo, F. Herrera, J.J.E., Rangel, J., Alfaro, A., Maza, M.A. & Sakaguchi, V. (2002). Neutron anisotropy and x-ray production of the FN-II dense plasma focus device. Brazilian Journal of Physics 32, 312.Google Scholar
Deutch, R. & Kies, W. (1988). Ion acceleration and runaway in dynamical pinches. Plasma Physics and Controlled Fusion 30, 263276.Google Scholar
Dulatov, A.K., Lemeshko, B.D., Mikhailov, Y.V., Prokuratov, I.A. & Selifanov, A.N. (2014). Generation of hard X-ray emission by the electron beam in plasma focus facilities. Plasma Physics Reports 40, 902909.Google Scholar
Ellsworth, J.L., Falabella, S., Tang, V., Schmidt, A., Guethlein, G., Hawkins, S. & Rusnak, B. (2014). Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff. The Review of Scientific Instruments 85, 013504.Google Scholar
Inestrosa-Izurieta, M.J., Ramos-Moore, E. & Soto, L. (2015). Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus. Nuclear Fusion 55, 093011 (8pp).Google Scholar
Jager, U. & Herold, H. (1987). Fast ion kinetics and fusion reaction mechanism in the plasma focus. Nuclear Fusion 27, 407423.Google Scholar
Jain, J., Moreno, J., Avaria, G., Pavez, C., Bora, B., Inestrosa-Izurieta, M.J., Diez, D., Alvarez, O., Tapia, J., Marcelain, K., Armisen, R. & Soto, L. (2016). Characterization of x-rays pulses from hundred joules plasma focus to study its effects on cancer cells. Journal of Physics Conference Series 720, 012043 (6pp).Google Scholar
Jakubowski, L., Sadowski, M. & Zebrowski, J. (2001). Measurements of charged particle beams from plasma focus discharges. Nuclear Fusion 41, 755 (5pp).Google Scholar
Kelly, H. & Marquez, A. (1995). Ion-beam and neutron production in a low energy plasma focus. Plasma Physics and Controlled Fusion 38, 19311942.Google Scholar
Lee, S. & Serban, A. (1996). Dimensions and lifetime of the plasma focus pinch. IEEE Transactions on Plasma Science 24, 11011105.Google Scholar
Mohanty, S.R., Bhuyan, H., Neog, N.K., Rout, R.K. & Hotta, E. (2005). Development of multi faraday cup assembly for ion beam measurements from a low energy plasma focus device. Japanese Journal of Applied Physics 44, 5199 (7pp).Google Scholar
Moo, S.P., Chakrabarty, C.K. & Lee, S. (1991). An investigation of the ion beam of a plasma focus using a metal obstacle and deuterated target. IEEE Transactions on Plasma Science 19, 519.Google Scholar
Moreno, J., Veloso, F., Pavez, C., Tarfeno-Saldivia, A., Klir, D. & Soto, L. (2015). Neutron energy distribution and temporal correlations with hard x-ray emission from a hundreds of joules plasma focus device. Plasma Physics and Controlled Fusion 57, 035008 (6pp).Google Scholar
Neog, N.K. & Mohanty, S.R. (2007). Study on electron beam emission from a low energy plasma focus device. Physics Letter A 361, 377381.Google Scholar
Neog, N.K., Mohanty, S.R. & Borthakur, T.K. (2008). Time resolved studies on X-rays and charged particles emission from a low energy plasma focus device. Physics Letters A 372, 22942299.Google Scholar
Pavez, C., Pedreros, J., Tarifeno-Saldivia, A. & Soto, L. (2015). Observation of plasma jets in a table top plasma focus discharge. Physics of Plasmas 22, 040705.Google Scholar
Pavez, C., Pedreros, J., Zambra, M., Veloso, F., Moreno, J., Tarifeño-Saldivia, A. & Soto, L. (2012). Potentiality of a small and fast dense plasma focus as hard x-ray source for radiographic applications. Plasma Physics and Controlled Fusion 54, 105018 (9pp).Google Scholar
Sadeghi, H., Habibi, M. & Ghasemi, M. (2017). Ion acceleration mechanism in plasma focus devices. Laser and Particle Beams 35, 437441.Google Scholar
Silva, P., Moreno, J., Soto, L., Birstein, L., Mayer, R.E. & Kies, W. (2003). Neutron emission from a fast plasma focus of 400 joules. Applied Physics Letters 83, 32693271.Google Scholar
Soto, L. (2005). New trends and future perspectives on plasma focus research. Plasma Physics and Controlled Fusion 47, A361A381.Google Scholar
Soto, L., Pavez, C., Moreno, J., Inestrosa, M.J., Veloso, F., Gutierrez, G., Vergara, J., Castillo, F., Clausse, A., Bruzzone, H. & Delgado-Aparicio, L. (2014). Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors. Physics of Plasmas 21, 122703 (6pp).Google Scholar
Soto, L., Silva, P., Moreno, J., Zambra, M., Kies, W., Mayer, R.E., Clausse, A., Altamirano, L., Pavez, C. & Huerta, L. (2008). Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules. Journal of Physics D: Applied Physics 41, 205215 (7pp).Google Scholar
Tarifeno-Saldivia, A., Pavez, C. & Soto, L. (2014). Pinch density measurements in compact plasma foci of 400J and 50J. Journal of Physics Conference Series 511, 012033 (4pp).Google Scholar
Veloso, F., Soto, L., Pavez, C. & Moreno, J. (2014). Initial stages in hundreds of joules plasma focus operating in deuterium – argon mixtures: preliminary results. Journal of Physics Conference Series 511, 012027 (5pp).Google Scholar
Verma, R., Rawat, R.S., Lee, P., Krishnan, M., Springham, S.V. & Tan, T.L. (2009)..Experimental study of neutron emission characteristics in a compact sub-kilojoule range miniature plasma focus device. Plasma Physics and Controlled Fusion 51, 075008 (16pp).Google Scholar
Yamamoto, T., Shimoda, K., Yashi, K.K. & Hirano, K. (1984). Correlation between plasma dynamics and emission of deuteron beam, x-rays and neutron in a plasma focus discharge. Japanese Journal of Applied Physics 23, 242246.Google Scholar
Zambra, M., Silva, P., Pavez, C., Pasten, D., Moreno, J. & Soto, L. (2009). Experimental results on hard x-ray energy emitted by a low-energy plasma focus device: a radiographic image analysis. Plasma Physics and Controlled Fusion 51, 125003 (10pp).Google Scholar