Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:01:43.578Z Has data issue: false hasContentIssue false

Numerical simulations of the projectile ion charge difference in solid and gaseous stopping matter

Published online by Cambridge University Press:  15 October 2007

S. Eisenbarth*
Affiliation:
Gesellschaft für SchwerionenforschungmbH Darmstadt, Germany
O.N. Rosmej
Affiliation:
Gesellschaft für SchwerionenforschungmbH Darmstadt, Germany
V.P. Shevelko
Affiliation:
P.N. Lebedev Physical Institute, Moscow, Russia
A. Blazevic
Affiliation:
Gesellschaft für SchwerionenforschungmbH Darmstadt, Germany
D.H.H. Hoffmann
Affiliation:
Gesellschaft für SchwerionenforschungmbH Darmstadt, Germany Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
*
Address correspondence and reprint requests to: Svitlana Eisenbarth, Gesellschaft für Schwerionenforschung mbH (GSI), Planckstrasse 1, D-64291 Darmstadt, Germany. E-mail: [email protected]

Abstract

The dependence of calcium ion subshell populations on the target density during the ion stopping process was analyzed using a five charge-state collisional-radiative model. The model, which consists of the ground and three excited states for every ion charge, was successfully compared with the experiment. The gas-solid difference of calcium ion charge state distribution has been numerically demonstrated. For Ca projectiles with energies of 4–11 MeV/u, the increase of the mean ion charge in solid target is explained by the increase of the total ionization rate and by suppression of the bound electron capture process at high densities of the stopping medium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anholt, R., Meyerhof, W.E., Stoller, C., Morenzoni, E., Andriamonje, S.A., Molitoris, J.D., Baker, O.K., Hoffmann, D.H.H., Bowman, H., Xu, J.S., Xu, Z.Z., Frankel, K., Murphy, D., Crowe, K. & Rasmussen, J.O. (1984). Atomic collisions with relativistic heavy ions: Target inner-shell ionization. Phys. Rev. A 30, 22342244.CrossRefGoogle Scholar
Anholt, R. (1985). Atomic collisions with relativistic heavy ions. II. Light-ion charge states. Phys. Rev. A 31, 35793592.CrossRefGoogle ScholarPubMed
Barriga-Carrasco, M.D. & Maynard, G. (2005). A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets. Laser Part. Beams 23, 211217.CrossRefGoogle Scholar
Bohr, N. & Lindhard, J. (1954). Electron capture and loss by heavy ions penetrating through matter. Dan. Mat. Fys. Medd. 28, 131.Google Scholar
Deutsch, C. & Popoff, R. (2006). Low velocity ion stopping of relevance to the US beam-target program. Laser Part. Beams 24, 421425.CrossRefGoogle Scholar
Dietrich, K.G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy ions in a hydrogen plasma. Phys. Rev. Lett. 69, 36233626.CrossRefGoogle Scholar
Faenov, A.Ya., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High- performance X-ray spectroscopic devices for plasma microsources investigations. Phys. Scrip. 50, 333338.CrossRefGoogle Scholar
Fertman, A., Mutin, T.Yu., Turtikov, V.I., Blazevic, A., Efremov, V.P., Golubev, A.A., Hoffmann, D.H.H., Korostiy, S., Pikuz, S.A. jr., Rosmej, O.N. & Sharkov, B.Yu. (2006). Stopping of calcium ions in low density SiO2 aerogels. 33rdEPS Conf. on Plasma Phys. Rome(30I), 2.001.Google Scholar
Geissel, H., Laichter, Y.Schneider, W.F.W. & Armbruster, P. (1982). Energy loss and energy loss straggling of fast heavy ions in matter. Nucl. Instr. Meth. 194, 2129.CrossRefGoogle Scholar
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagistris, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy loss of fast heavy ions in plasmas. Nucl. Instr. Meth. Phys. Res. B 90, 19.CrossRefGoogle Scholar
Hoffmann, D.H.H., Bock, R., Faenov, A.Ya., Funk, U., Geissel, M., Neuner, U., Pikuz, T.A., Rosmej, F., Roth, M., Süß, W., Tahir, N. & Tauschwitz, A. (2000). Plasma physics with intense laser and ion beams. Nucl. Instr. Meth. Phys. Res. B 161, 918.CrossRefGoogle Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Kauffman, R.L., Jamison, K.A., Gray, T.J. & Richard, P. (1976). Heavy-ion-produced high–resolution Si-K-X-ray spectra from a gas and solid. Phys. Rev. Lett. 36, 10741077.CrossRefGoogle Scholar
Kawamura, T., Horioka, K. & Koike, F. (2006). Potential of Kα radiation by energetic ionic particles for high energy density plasma diagnostics. Laser Part. Beams 24, 261267.CrossRefGoogle Scholar
Klein, O. & Rosseland, S. (1921). Über Zusammenstöße zwischen Atomen and freien Elektronen. Z. Phys. A 4, 4651.CrossRefGoogle Scholar
Kraft, G. (2000). Tumor therapy with heavy charged particles. Prog. Part. Nucl. Phys. 45, 473544.CrossRefGoogle Scholar
Labaune, C., Hogan, W.J. & Tanaka, K.A. (2000). Proceeding of “First International Conference on Inertial Fusion Science and Application” Paris: Elsevier.Google Scholar
Lassen, N.O. (1951 a). The total charges of fission fragments in gaseous and solid stopping media. Dan. Mat. Fys. Medd. 26, 128.Google Scholar
Lassen, N.O. (1951 b). Total charges of fission fragments as functions of the pressure of the stopping gas. Dan. Mat. Fys. Medd. 26, 119.Google Scholar
Lebedev, V.S. & Beigman, I.L. (1998). Physics of Highly Excited Atoms. Berlin: Springer.CrossRefGoogle Scholar
Nardi, E., Fisher, D.V., Roth, M., Blazevic, A. & Hoffmann, D.H.H. (2006). Charge state of Zn projectile ions in partially ionized plasma: Simulations. Laser Part. Beams 24, 131141.CrossRefGoogle Scholar
Nardi, E., Maron, Y. & Hoffmann, D.H.H. (2007). Plasma diagnostics by means of scattering of electron and proton beams. Laser Part. Beams 25, xxxxxx.CrossRefGoogle Scholar
Ogawa, H., Geissel, H., Fettouhi, A., Fritzsche, S., Pottillo, M., Scheidenberger, C., Shevelko, V.P., Surzhykov, A., Weick, H., Becker, F., Boutin, D., Kindler, B., Knöbel, R.K., Kurcewicz, W., Litvinov, Yu.A., Lommel, B., Münzenberg, G., Plaß, W.R., Sakamoto, N., Stadlmann, J., Tsuchida, H., Winkler, M. & Yao, N. (2007). Gas-solid difference in charge-changing cross sections for bare and H-like nickel ions at 200 MeV/u. Phys. Rev. A 75, 020703.CrossRefGoogle Scholar
Rosmej, O.N., Wieser, J., Geissel, M., Rosmej, F., Blazevic, A., Jacoby, J., Dewald, E., Roth, M., Brambrink, E., Weyrich, K., Hoffmann, D.H.H., Pikuz, T.A., Faenov, A.Ya., Magunov, A.I., Skobelev, I.Y., Borisenko, N.G., Shevelko, V.P., Golubev, A.A., Fertman, A., Turtikov, V. & Sharkov, B.Y. (2002). X-ray spectromicroscopy of fast heavy ions and target radiation. Nucl. Instr. Meth. Phys. Res. A 495, 2939.CrossRefGoogle Scholar
Rosmej, O.N., Pikuz, S.A. jr., Wieser, J., Blazevic, A., Brambrink, E., Roth, M., Efremov, V.P., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu. & Hoffmann, D.H.H. (2003). Investigation of the projectile ion velocity inside the interaction media by the X-ray spectromicroscopy method. Rev. Scien. Instr. 74, 50395045.CrossRefGoogle Scholar
Rosmej, O.N., Blazevic, A., Korostiy, S., Bock, R., Hoffmann, D.H.H., Pikuz, S.A. jr., Efremov, V.P., Fortov, V.E., Fertman, A., Mutin, T., Pikuz, T.A. & Faenov, A.Ya. (2005 a). Charge state and stopping dynamics of fast heavy ions in dense matter. Phys. Rev. A 72, 052901.CrossRefGoogle Scholar
Rosmej, O.N., Pikuz, S.A. jr., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, T., Shevelko, V.P., Efremov, V.P., Pikuz, T.A., Faenov, A.Ya., Loboda, P., Golubev, A.A. & Hoffmann, D.H.H. (2005 b). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 17.CrossRefGoogle Scholar
Rozet, J.P., Stephan, C. & Vernhet, D. (1996). ETACHA: A program for calculating charge states at GANIL energies. Nucl. Instr. Meth. Phys. Res. B 107, 6770.CrossRefGoogle Scholar
Safronova, U.I. & Lisina, T.G. (1979). Atomic constants of autoionizations states of ions with Z = 6, 8, 10–42 in Be isoelectronic sequence. Atom. Data Nucl. Data 24, 4993.CrossRefGoogle Scholar
Shevelko, V.P. (1980). On the relation between quantum-mechanical and impact parameter amplitudes in charge exchange. J. Phys. B 13, L319L322.CrossRefGoogle Scholar
Shevelko, V.P. (2001). Charge exchange in collisions between heavy low-charged ions. Tech. Phys. 46, 12251234.CrossRefGoogle Scholar
Shevelko, V.P., Tolstikhina, I.Y. & Stöhlker, T. (2001). Stripping of fast heavy low-charged ions in gaseous target. Nucl. Instr. Meth. Phys. Res. B 184, 295308.CrossRefGoogle Scholar
Shevelko, V.P., Rosmej, O.N., Tawara, H. & Toltikhina, I.Yu. (2004). Target-density effect in electron-capture processes. J. Phys. B: At. Mol. Opt. Phys. 37, 201213.CrossRefGoogle Scholar
Shevelko, V.P., Tawara, H., Ivanov, O.V., Miyoshi, T., Noda, K., Sato, Y., Subbotin, A.V. & Tolstikhina, I.Yu. (2005). Target density effects in collisions of fast ions with solid targets. J. Phys. B: At. Mol. Opt. Phys. 38, 26752690.CrossRefGoogle Scholar
Shima, K., Ishihara, T. & Mikumo, T. (1982). Empirical formula for the average equilibrium charge-state of heavy ions behind various foils. Nucl. Instr. Meth. Phys. Res. 200, 605608.CrossRefGoogle Scholar
Sobelman, I.I. & Vainshtein, L.A. (2006). Excitation of Atomic Spectra. London: Alpha Science International Ltd.Google Scholar