Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T22:34:56.090Z Has data issue: false hasContentIssue false

Numerical Simulation of Radiation-driven Targets for Light-ion Inertial Confinement Fusion

Published online by Cambridge University Press:  09 March 2009

R.E. Olson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
J.J. Macfarlane
Affiliation:
Fusion Technology Institute, University of Wisconsin, Madison, Wisconsin 53706, USA

Abstract

Light ion beam inertial confinement fusion (ICF) is a concept in which intense beams of low atomic number ions would be used to drive ICF targets to ignition and gain. Here, results from numerical simulations are presented describing the operation of an indirect-drive light-ion ICF target designed for a commercial power plant application. The simulations indicate that the ICF target, consisting of an X-ray-driven capsule embedded in a spherical foam-filled hohlraum, will produce a fusion energy output of over 500 MJ when driven with lithium ion beams containing a total input energy of 8 MJ.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allshouse, G.O. 1981 Res. Rep. SNLGoogle Scholar
Allshouse, G.O. 1993 private communication.Google Scholar
Bodner, S.E. 1981 NRL Memorandum Rpt. 4453.Google Scholar
Clauser, M.J. 1975 Phys. Rev. Lett. 35, 848.CrossRefGoogle Scholar
Hoffer, J.K. & Foreman, L.R. 1988 Phys. Rev. Lett. 60, 1310.CrossRefGoogle Scholar
Kulcinski, G.L. et al. 1994 Fusion Technol. 26, 849.CrossRefGoogle Scholar
Leeper, R.J. et al. 1995 J. Plasma & Fusion Res. 71, 945.Google Scholar
Lindl, J. 1995 Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Lyon, S.P. & Johnson, J.D., eds. 1992 LANL Report LA UR–92–3407.Google Scholar
MacFarlane, et al. 1995 Univ. of Wisconsin Fusion Tech. Inst. Rep. UWFDM-984.Google Scholar
MacFarlane, J.J. et al. 1997 Fusion Technol. 30, 1569.CrossRefGoogle Scholar
Mehlhorn, T.A. 1981 J. Appl. Phys. 52, 6522.CrossRefGoogle Scholar
Moses, G.A. et al. 1985 Univ. of Wisconsin Fusion Tech. Inst. Rep. UWFDM-194.Google Scholar
Moses, G.A. et al. 1989 Laser Part. Beams 7, 721.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Olson, R.E. et al. 1993 In Proc. 7th Int. Conf., Chiba, Japan, pp. 9197.Google Scholar
Olson, R.E. et al. 1994 Fusion Technol. 26, 922.CrossRefGoogle Scholar
Olson, R.E. et al. 1997 Phys. Plasmas. 4, 1818.CrossRefGoogle Scholar
Quintenz, J.P. et al. 1996 Progress in Nuclear Energy 30, 183.CrossRefGoogle Scholar
Slutz, S.A. 1979 1995 Laser Part. Beams 13, 243.CrossRefGoogle Scholar
Wang, P. 1993 University of Wisconsin Fusion Technology Institute Report UWFDM-933.Google Scholar
Yonas, G. 1978 Sci. Am. 239, 50.CrossRefGoogle Scholar
Zimmerman, G.B. & Kruer, W.L. 1975 Comments Plasma Phys. 2, 51.Google Scholar