Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T18:42:14.108Z Has data issue: false hasContentIssue false

Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities

Published online by Cambridge University Press:  09 March 2009

D.L. Youngs
Affiliation:
Atomic Weapons Establishment, Aldermaston, Reading, Berkshire, RG7 4PR, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rayleigh-Taylor (RT) and Richtmyer–Meshkov (RM) instabilities at the pusher–fuel interface in inertial confinement fusion (ICF) targets may significantly degrade thermonuclear burn. Present-day supercomputers may be used to understand the fundamental instability mechanisms and to model the effect of the ensuing mixing on the performance of the ICF target. Direct three-dimensional numerical simulation is used to investigate turbulent mixing due to RT and RM instability in simple situations. A two-dimensional turbulence model is used to assess the effect of small-scale turbulent mixing in the axisymmetric implosion of an idealized ICF target.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

REFERENCES

Andrews, M.J. 1992 Advances in Compressible Turbulent Mixing, W.P. Dannevik, A.C. Buckingham, and C.E. Leith, eds. CONF-8810234, Lawrence Livermore National Laboratory.Google Scholar
Andrews, M.J. & Spalding, D.B. 1990 Phys. Fluids A 2, 922.CrossRefGoogle Scholar
Andronov, V.A. et al. 1976 Sov. Phys. JETP 44, 424.Google Scholar
Anuchina, N.N. et al. 1978 Tr. Izv. Nauk SSSR, Mekh. Zhidk. Gaza 6, 157.Google Scholar
Barenblatt, G.I. 1983 Non-linear Dynamics and Turbulence, Barenblatt, G.I., Loos, G., and Joseph, D.D., eds. (Pitman, Boston).Google Scholar
Batt, R.G. 1977 J. Fluid Mech 82, 53.Google Scholar
Belen'kii, S.Z. & Fradkin, E.S. 1965 Tr. Fiz. Inst. Akad. Nauk SSSR im P N Lebedev 29, 207.Google Scholar
Besnard, D.C. & Harlow, F.H. 1988 Int. J. Multiphase Flow 14, 679.CrossRefGoogle Scholar
Besnard, D.C. et al. 1989 Physica D37, 227.Google Scholar
Brown, G.L. & Roshko, A. 1974 J. Fluid Mech 64, 775.CrossRefGoogle Scholar
Chern, I.-L. et al. 1986 J. Comp. Phys. 62, 83.Google Scholar
Cloutman, L.D. & Wehner, M.F. 1992 Phys. Fluids A 4, 1821.Google Scholar
Crowley, W.P. 1992 Advances in Compressible Turbulent Mixing, W.P. Dannevik, A.C. Buckingham, and C.E. Leith, eds. CONF-8810234, Lawrence Livermore National Laboratory.Google Scholar
Dahlburg, J.P. & Gardner, J.H. 1990 Phys. Rev. A 41, 5695.Google Scholar
Daly, B.J. 1967 Phys. Fluids 10, 297.CrossRefGoogle Scholar
Debar, R. 1974 Lawrence Livermore National Laboratory Report UCID-19683.Google Scholar
Gardner, J.H. et al. 1991 Phys. Fluids B3, 1070.Google Scholar
Gentry, R.A. et al. 1966 J. Comp. Phys. 1, 87.Google Scholar
Glimm, J. et al. 1990 Phys. Fluids A 2, 2046.CrossRefGoogle Scholar
Harlow, F.H. & Welch, J.E. 1966 Phys. Fluids 9, 842.Google Scholar
Kerr, R.M. 1988 J. Comp. Phys. 76, 48.CrossRefGoogle Scholar
Kucherenko, Yu. A. et al. 1991 In Proc. of Third International Workshop on the Physics of Compressible Turbulent Mixing, Royaumont, Commissariat à 'Energie Atomique, Paris, France.Google Scholar
Launder, B.E. & Spalding, D.B. 1972 Mathematical Models of Turbulence (Academic Press, London).Google Scholar
Mikaelian, K.O. 1991 Phys. Fluids A 3, 2638.CrossRefGoogle Scholar
Moin, P. & Kim, J. 1982 J. Fluid Mech. 118, 341.Google Scholar
Mulder, W. et al. 1992 J. Comp. Phys. 100, 209.CrossRefGoogle Scholar
Neuvazhayev, V.E. 1975 Sov. Phys. Dokl. 20, 398.Google Scholar
Neuvazhayev, V.E. 1991 Matematicheskoye Modelinovaniye, 3, 10 (in Russian).Google Scholar
Pham, T. & Meiron, D.I. 1993 Phys. Fluids A 5, 334.Google Scholar
Polyonov, A.V. 1991 In Proc. of Third International Workshop of the Physics of Compressible Turbulent Mixing, Royaumont, Commissariat à 'Energie Atomique, Paris, France.Google Scholar
Read, K.I. 1984 Physica D12, 45.Google Scholar
Richtmyer, R.D. 1960 Commum. Pure Appl. Math. 13, 297.Google Scholar
Spalding, D.B. 1987 Int. J. Multiphase Flow 24, 1.Google Scholar
Town, R.P.J. & Bell, A.R. 1991 Phys. Rev. Lett. 67, 1863.CrossRefGoogle Scholar
Tryggvason, G. 1988 J. Comp. Phys. 75, 253.Google Scholar
Tryggvason, G. & Unverdi, S.O. 1990 Phys. Fluids A 2, 656.Google Scholar
Van Leer, B. 1977 J. Comp. Phys. 23, 276.Google Scholar
Youngs, D.L. 1982 Numerical Methods for Fluid Dynamics, Morton, K.W. and Baines, M.J., eds. (Academic Press, London).Google Scholar
Youngs, D.L. 1984 Physica 12D, 32.Google Scholar
Youngs, D.L. 1989 Physica D37, 270.Google Scholar
Youngs, D.L. 1991 Phys. Fluids A 3, 1312.Google Scholar