Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:14:25.650Z Has data issue: false hasContentIssue false

Numerical research on the ion-beam-driven hydrodynamic motion of fissile targets for nuclear safety studies

Published online by Cambridge University Press:  27 October 2014

Y. Oguri*
Affiliation:
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
K. Kondo
Affiliation:
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
J. Hasegawa
Affiliation:
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
*
Address correspondence and reprint requests to: Y. Oguri, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, 152-8550 Tokyo, Japan. E-mail: [email protected]

Abstract

As a method to evaluate high-temperature equation of state (EOS) data of fissile materials precisely and safely, we numerically examined an experimental setup based on a sub-range fissile target and a high-intensity short-pulsed heavy-ion beam. As an example, we calculated one-dimensional hydrodynamic motion of a uranium target with ρ = 0.03ρsolidsolid ≡ solid density = 19.05 g/cm3) induced by a pulsed 23Na+ beam with a duration of 2 ns and a peak power of 5 GW/mm2. The projectile stopping power was calculated using a density- and temperature-dependent dielectric response function. To heat the target uniformly, we optimized the experimental condition so that the energy deposition could occur almost at the top of the Bragg peak. The energy deposition inhomogeneity could be reduced to ±5% by adjusting the incident energy and the target thickness to be 2.02 MeV/u and 180 μm, respectively. The target could be heated homogeneously up to kT =7 eV well before the arrival of the rarefaction waves at the center of the target. In principle, the EOS data can be evaluated by iteratively adjusting the data embedded in the hydro code until the measured hydrodynamic motion is reproduced by the calculation. This method is consistent with the conditions of nuclear nonproliferation, because a very small amount of fissile material is enough to perform the experiment, and no shock compression occurs in the target.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arista, N.R. & Brandt, W. (1984). Dielectric response of quantum plasmas in thermal equilibrium. Phys. Rev. A 29, 14711480.Google Scholar
Armijo, J. & Barnard, J.J. (2011). Droplet evolution in expanding flow of warm dense matter. Phys. Rev. E 83, 051507.Google Scholar
Barnard, J.J., Armijo, J., More, R.M., Friedman, A., Kaganovich, I., Logan, B.G., Marinak, M.M., Penn, G.E., Sefkow, A.B., Santhanam, P., Stoltz, P., Veitzer, S. & Wurtele, J.S. (2007). Theory and simulation of warm dense matter targets. Nucl. Instrum. Meth. Phys. Res. A 577, 275283.Google Scholar
Belyaev, G., Basko, M., Cherkasov, A., Golubev, A., Fertman, A., Roudskoy, I., Savin, S., Sharkov, B., Turtikov, V., Arzumanov, A., Borisenko, A., Gorlachev, I., Lysukhin, S., Hoffmann, D.H.H. & Tauschwitz, A. (1996). Measurement of the Coulomb energy loss by fast protons in a plasma target. Phys. Rev. E 53, 27012707.Google Scholar
Buddemeier, B.R., Valentine, J.E., Millage, K.K. & Brandt, L.D. (2011). National Capital Region: Key Response Planning Factors for the Aftermath of Nuclear Terrorism. Technical Report LLNL-TR-512111. Livermore: Lawrence Livermore National Laboratory.Google Scholar
Committee on High Energy Density Plasma Physics, Plasma Science Committee, National Research Council (2003). Frontiers in High Energy Density Physics: The X-Games of Contemporary Science. Washington, DC: The National Academies Press, Washington.Google Scholar
Friedman, A., Cohen, R.H., Grote, D.P., Sharp, W.M., Kaganovich, I.D., Koniges, A.E. & Liu, W. (2013). Heavy Ion Beams and Interactions with Plasmas and Targets (HEDLP and IFE). Technical Report, LLNL-TR-627254 Livermore: Lawrence Livermore National Laboratory.Google Scholar
Gardes, D., Servajean, A., Kubica, B., Fleurier, C., Hong, D., Deutsch, C. & Maynard, G. (1992). Stopping of multicharged ions in dense and fully ionized hydrogen. Phys. Rev. A 46, 51015111.Google Scholar
Gnanadhas, L., Sharma, A.K., Malarvizhi, B., Murthy, S.S., Rao, E.H., Kumaresan, M., Ramesh, S.S., Harvey, J., Nashine, B.K., Chellapandi, P. & Chetal, S.C. (2011). PATH — An experimental facility for natural circulation heat transfer studies related to post accident thermal hydraulics. Nucl. Eng. Des. 241, 38393850.Google Scholar
Grisham, L.R. (2004). Moderate energy ions for high energy density physics experiments. Phys. Plasmas 11, 57275729.Google Scholar
Hasegawa, J., Nakajima, Y., Sakai, K., Yoshida, M., Fukata, S., Nishigori, K., Kojima, M., Oguri, Y., Nakajima, M., Horioka, K., Ogawa, M., Neuner, U. & Murakami, T. (2001). Energy loss of 6 MeV/u iron ions in partially ionized helium plasma, Nucl. Instrum. Meth. Phys. Res. A 464, 237242.Google Scholar
Heller, A. (2004). Shocking plutonium to reveal its secrets. Science & Technology Review Livermore: Lawrence Livermore National Laboratory, 4–11.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardés, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in a plasma target, Phys. Rev. A 42, 23132321.Google Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.Google Scholar
Hofmann, P.L. (1970). Lecture series: Fast reactor safety technology and practices, Volume II, Accident analysis. Battelle Memorial Institute, Pacific Northwest Laboratories, BNWL-SA-3093, Vol. II.Google Scholar
Iosilevskiy, I. & Gryaznov, V. (2002). Heavy ion beam in resolution of the critical point problem for uranium and uranium dioxide. arXiv:1005.4192 [physics.plasm-ph].Google Scholar
Iosilevskiy, I. & Gryaznov, V. (2005). Uranium critical point problem. J. Nucl. Mater. 344, 3035.Google Scholar
Logan, B.G., Davidson, R.C., Barnard, J.J. & Lee, R. (2004). A Unique U.S. Approach for Accelerator-Driven Warm Dense Matter Research — Preliminary Report. Technical Report UCRL-TR-208767. Livermore: Lawrence Livermore National Laboratory.Google Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.Google Scholar
Lyon, S.P. & Johnson, J.D. (1992). SESAME: The Los Alamos National Laboratory Equation of State Database. Technical Report LA-UR-92-3407. Los Alamos: Los Alamos National Laboratory.Google Scholar
Medalia, J. (2013). Comprehensive nuclear-test-ban treaty: Background and current developments. Congressional Research Service 7-5700, RL33548.Google Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.Google Scholar
Morita, K. & Fischer, E.A. (1998). Thermodynamic properties and equations of state for fast reactor safety analysis, Part I: Analytic equation-of-state model. Nucl. Eng. Des. 183, 177191.Google Scholar
Oguri, Y., Kondo, K. & Hasegawa, J. (2014). Numerical study of heavy-ion stopping in foam targets with one-dimensional subcell-scale hydrodynamic motions. Nucl. Instrum. Meth. Phys. Res. A 733, 47.Google Scholar
Pflieger, R., Colle, J.-Y., Iosilevskiy, I. & Sheindlin, M. (2011). Urania vapor composition at very high temperatures. J. Appl. Phys. 109, 033501.Google Scholar
Ragan, C.E. III (1982). Shock compression measurements at 1 to 7 TPa. Phys. Rev. A 25, 33603375.Google Scholar
Ramis, R., Schmalz, R. & Meyer-ter-Vehn, J. (1988). MULTI – A computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun. 49, 475505.Google Scholar
Ronchi, C., Iosilevski, I.L. & Yakub, E.S. (2004). Equation of State of Uranium Dioxide: Data Collection. New York: Springer.Google Scholar
Roy, P.K., Yu, S.S., Henestroza, E., Anders, A., Bieniosek, F.M., Coleman, J., Eylon, S., Greenway, W.G., Leitner, M., Logan, B.G., Waldron, W.L., Welch, D.R., Thoma, C., Sefkow, A.B., Gilson, E.P., Efthimion, P.C. & Davidson, R.C. (2005). Drift compression of an intense neutralized ion beam. Phys. Rev. Lett. 95, 234801.Google Scholar
Sakumi, A., Shibata, K., Sato, R., Tsubuku, K., Nishimoto, T., Hasegawa, J., Ogawa, M., Oguri, Y. & Katayama, T. (2001). Energy dependence of the stopping power of MeV 16O ions in a laser-produced plasma, Nucl. Instrum. Meth. Phys. Res. A 464, 231236.Google Scholar
Salzmann, D. (1998). Atomic Physics in Hot Plasmas. New York: Oxford University Press.Google Scholar
Seidl, P.A., Barnard, J.J., Faltens, A. & Friedman, A. (2013). Research and development toward heavy ion driven inertial fusion energy. Phys. Rev. Spec. Top. Accel. Beams 16, 024701.Google Scholar
Tahir, N.A., Matveichev, A., Kim, V., Ostrik, A., Shutov, A., Sultanov, V., Lomonosov, I.V., Piriz, A.R. & Hoffmann, D.H.H. (2009). Three-dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super-FRS. Laser Part. Beams 27, 917.CrossRefGoogle Scholar