Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:04:06.851Z Has data issue: false hasContentIssue false

Numerical investigation of magnetic Richtmyer-Meshkov instability

Published online by Cambridge University Press:  12 June 2012

Y. Levy
Affiliation:
CEA, DAM, DIF, Arpajon, France
S. Jaouen
Affiliation:
CEA, DAM, DIF, Arpajon, France
B. Canaud*
Affiliation:
CEA, DAM, DIF, Arpajon, France
*
Address correspondence and reprint requests to: B. Canaud, CEA, DAM, DIF, F-91297 Arpajon, France. E-mail: [email protected]

Abstract

We report numerical results of the linear growth of the Richtmyer-Meshkov instability (RMI) in compressible fluids and in the presence of a magnetic field. These results are obtained with the Lagrangian code LPC-MHD in which media are supposed to be compressible ideal gases. We first applied a magnetic field perpendicular to the wave vector and perpendicular to the shock wave propagation and observed no changes on the perturbation growth velocity compared to the case without magnetic field. We also considered the configuration where the magnetic field is parallel to the wave vector. We observed the stabilization of the instability with oscillations of the perturbations amplitude. Numerical results are compared to impulsive acceleration model of the RMI in the presence of a transverse magnetic field, in the non-compressible limit. A good agreement is obtained between numerical results and model for both the amplitude and the frequency of oscillations. Compressibility seems to have negligible effects.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Breil, J., Hallo, L., Maire, P.H. & Olazaba-Loume, M. (2005). Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations. Laser Part. Beams 23, 155.CrossRefGoogle Scholar
Chevalier, R.A. & Blondin, J.M. (1995). Hydrodynamic instabilities in supernova remnants: Early radiative cooling. Astrophys. J. 444, 312.CrossRefGoogle Scholar
Canaud, B., Garaude, F., Ballereau, P., Bourgade, J.L., Clique, C., Dureau, D., Houry, M., Jaouen, S., Jourdren, H., Lecler, N., Masse, L., Masson, A., Quach, R., Piron, R., Riz, D., Van der Vliet, J., Temporal, M., Delettrez, J.A. & McKenty, P.W. (2007 a). High-gain direct-drive inertial confinement fusion for the laser meajoule: Recent progress. Plasma Phys. Contr. Fusion 49, B601.CrossRefGoogle Scholar
Canaud, B., Garaude, F., Garaude, F., Clique, C., Lecler, N., Masson, A., Quach, R. & Van der Vliet, J. (2007 b). High-gain direct-drive laser fusion with indirect drive beam layout of laser meajoule. Nucl. Fusion 47, 1652.CrossRefGoogle Scholar
Canaud, B. & Temporal, M. (2010). High-gain shock ignition of direct-drive ICF targets for the laser meajoule. New J. Phys. 12, 043037.CrossRefGoogle Scholar
Cao, J., Wu, Z., Ren, H. & Li, D. (2008). Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability. Phys. Plasma 15, 042101.CrossRefGoogle Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C. (2005). Effect of convergence on growth of the Richtmyer-Meshkov instability. Laser Part. Beam 23, 21.Google Scholar
Fraley, G. (1986). Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction. Phys. Fluids 29, 376.CrossRefGoogle Scholar
Fryxell, B., Mueller, E. & Arnet, D. (1991). Instabilities and clumping in SN 1987A. I: Early evolution in two dimensions. Astrophy. J. 367, 619.CrossRefGoogle Scholar
Giorla, J., Bastian, J., Bayer, C., Canaud, B., Casanova, M., Chaland, F., Cherfils, C., Clique, C., Dattolo, E., Fremerye, P., Galmiche, D., Garaude, F., Gauthier, P., Laffite, S., Lecler, N., Liberatore, S., Loiseau, P., Malinie, G., Masse, L., Masson, A., Monteil, M.C., Poggi, F., Quach, R., Renaud, F., Saillard, Y., Seyton, P., Vandenboomgaerde, M., Van Der Vliet, J. & Wagon, F. (2006). Target design for ignition experiments on the laser meajoul facility. Plasma Phys. Contr. Fusion 48, B75.CrossRefGoogle Scholar
Gupta, M.R., Roy, S., Sarkar, S., Khan, M., Pant, H.C. & Srivastava, M.K. (2007). Effect on Richtymer-Meshkov instability of deviation from sinusoidality of the corrugated interface between two fluids. Laser Part. Beams 25, 503.CrossRefGoogle Scholar
Jaouen, S. (2007). J. Comp Phys. 225, 464.CrossRefGoogle Scholar
Jun, B.-I., Norman, M.L. & Stone, J.M. (1995). Instability in magnetic fluids. Astrophys. J. 453, 332.CrossRefGoogle Scholar
Liberatore, S., Jaouen, S., Tabakhoff, E. & Canaud, B. (2009). Compressible magnetic Rayleigh-Tayor instabilities in strafified plasma: Comparison of analytical and numerical results in the linear regime. Phys. Plasmas 16, 044502.CrossRefGoogle Scholar
Meyer, K.A. & Blewett, P.J. (1972). Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15, 753.CrossRefGoogle Scholar
Meshkov, E.E. (1969). Instability of the interface of two gases accelerated by a shock wave. Mekhanika Zhidkosti I Gaza 4, 151.Google Scholar
Mikaelian, K.O. (1994). Freeze-out and the effect of compressibility in the Richtymer-Meshkov instability. Phys. Fluids 6, 356.CrossRefGoogle Scholar
Qiu, Z., Wu, Z., Cao, J. & Li, D. (2008). Effects of transverse magnetic flied and viscosity on the Richtmyer-Meshkov instability. Phys. Plasmas 15, 042305.CrossRefGoogle Scholar
Richtmyer, R.D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297.CrossRefGoogle Scholar
Rygg, J.R., Seguin, F.H., Li, C.K., Frenje, J.A., Manuel, M.J.-E., Petrasso, R.D., Betti, R., Delettrez, J.A., Gotchev, O.V., Knauer, J.P., Meyerhofer, D.D., Marshall, F.J., Stoeckl, C. & Theobal, W. (2008). Proton radiography of inertial fusion implosions. Sci. 319, 1223.Google ScholarPubMed
Samtaney, R. (2003). Suppression of the Rictmyer-Meshkov instability in the presence of a magnetic field. Phys. Fluids 15, L53.CrossRefGoogle Scholar
Temporal, M., Jaouen, S., Masses, L. & Canaud, B. (2006). Hydrodynamic instabilities in ablative tamped flows. Phys. Plasmas 13, 122701.CrossRefGoogle Scholar
Velikovich, A. & Phillips, L. (1996). Instability of a plane centered rarefaction wave. Phys. Fluids 8, 1107.CrossRefGoogle Scholar
Wouchuk, J.A. & Nishihara, K. (1996). Linear perturbation growth at a shocked interface. Phys. Plasmas 3, 3761.CrossRefGoogle Scholar
Wheatley, V., Pullin, D.I. & Samtaney, R. (2005). Stability of an impulsively accelerated density interface in magnetohydrodynamics. Phys. Rev. Lett. 95, 125002.CrossRefGoogle ScholarPubMed
Yang, Y., Zhang, Q. & Sharp, D.H. (1994). Small amplitude theory of Richtmyer-Meshkov instability. Phys. Fluids 6, 1856.CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.I. (1996). An analytical non-linear theory of Richtmyer-Meshkov instability. Phys. Lett. A 212, 149.CrossRefGoogle Scholar