Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T19:46:29.006Z Has data issue: false hasContentIssue false

Nonlocal electron heat transport and electron–ion energy transfer in the presence of strong collisional heating

Published online by Cambridge University Press:  01 June 2004

F. ALOUANI BIBI
Affiliation:
Institut National de la Recherche Scientifique-Energie et Matériaux, Varennes, Québec, Canada
J.-P. MATTE
Affiliation:
Institut National de la Recherche Scientifique-Energie et Matériaux, Varennes, Québec, Canada

Abstract

Nonlocal electron heat transport in plasmas heated by a high-intensity laser field is investigated. We show how the heat transport is strongly modified by the super-Gaussian character of the energy distribution caused by the strong collisional heating. The change in the collisional electron–ion energy exchange due to this modification of the shape of the electron distribution function is also studied.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alouani Bibi, F. & Matte, J-P. (2002). Influence of the electron distribution function shape on nonlocal electron heat transport in laser heated plasmas. Phys. Rev. E 66, 066414 15.
Alouani Bibi, F. & Matte, J-P. (2003). Enhanced electron-ion energy exchange due to a super-gaussian electron velocity distribution function. Phys. Plasmas 10, 11201123.CrossRefGoogle Scholar
Bychenkov, V., Rozmus, W., Tikhonchuk, V.T. & Brantov, A.V. (1995). Nonlocal electron transport in a plasma. Phys Rev. Lett. 75, 44054408.CrossRefGoogle Scholar
Epperlein, E.M. & Short, R.W. (1990). Kinetic theory of laser filamentation in plasmas. Phys. Rev. Lett. 65, 21452148.CrossRefGoogle Scholar
Epperlein, E.M. & Short, R.W. (1992). Nonlocal heat transport effects on the filamentation of light in plasmas. Phys. Fluids B 4, 22112216.CrossRefGoogle Scholar
Epperlein, E.M. & Short, R.W. (1994). Nonlocal electron transport in the presence of high-intensity laser irradiation. Phys. Rev. E 50, 16971699.Google Scholar
Ethier, S. & Matte, J-P. (2001). Electron kinetic simulations of solid density A1 plasmas produced by intense subpicosecond laser pulses. I. Ionization dynamics in 30 femtosecond pulses. Phys. Plasmas 8, 16501658.Google Scholar
Langdon, A.B. (1980). Nonlinear inverse Bremsstrahlung and heated-electron distributions. Phys Rev. Lett. 44, 575579.CrossRefGoogle Scholar
Luciani, J.F., Mora, P. & Bendib, A. (1985). Magnetic field and nonlocal transport in laser-created plasmas. Phys. Rev. Lett. 55, 24212424.CrossRefGoogle Scholar
Luciani, J.F., Mora, P. & Virmont, J. (1983). Nonlocal heat transport to steep temperature gradients. Phys. Rev. Lett. 51, 16641667.CrossRefGoogle Scholar
Matte, J-P., Lamoureux, M., Möller, C., Yin, R.Y., Delettrez, J., Virmont, J. & Johnston, T.W. (1988). Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas. Plasma Phys. Controlled Fusion 30, 16651689.CrossRefGoogle Scholar
Mora, P. & Yahi, H. (1982). Thermal heat-flux reduction in laser-produced plasmas. Phys. Rev. A 26, 22592261.CrossRefGoogle Scholar
NRL Plasma Formulary (2000). Naval Research Laboratory.
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.CrossRefGoogle Scholar