Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:29:23.205Z Has data issue: false hasContentIssue false

Non-linear interaction of ultra-intense ultra-short laser pulse with a relativistic flying double-sided dense plasma slab/mirror

Published online by Cambridge University Press:  24 February 2014

Vineeta Jain
Affiliation:
DST-Project, Vardhaman Mahaveer Open University, Kota, India
K.P. Maheshwari*
Affiliation:
DST-Project, Vardhaman Mahaveer Open University, Kota, India
N.K. Jaiman
Affiliation:
Department of Pure and Applied Physics, University of Kota, India
Harish Malav
Affiliation:
DST-Project, Vardhaman Mahaveer Open University, Kota, India
*
Address correspondence and reprint requests to: K.P. Maheshwari, DST-Project, Vardhaman Mahaveer Open University, Rawat-Bhata Road, Kota-324010, India. E-mail: [email protected]

Abstract

Analytical and numerical investigation of the reflection and transmission of a counter-propagating relativistically strong laser pulse from a relativistically flying dense plasma double-sided mirror is studied. We assume that the incident laser pulse is short, so that we can neglect the slow ion dynamics and consider the electron motion only. Numerical results of the amplitudes of the reflected/transmitted electric fields from a uniformly moving mirror, accelerated mirror, and oscillating mirror are obtained. Fourier spectrum of the reflected intensity from the moving mirror shows that the intensity decreases with increase in the frequency. The reflected pulse has an up-shifted frequency and increased intensity. It is seen that the first few cycles of the reflected radiation exhibit presence of high harmonics, while the later cycles are compressed together with harmonics in comparison with the earlier cycles. The variation of the reflection coefficient for a uniformly moving mirror as a function of the thin foil plasma-density parameter is numerically studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baeva, T., Gordienko, S. & Pukhov, A. (2006). Theory of high harmonic generation in relativistic laser interaction with overdens plasma. Phys. Rev. E. 74, 046404/1–12.Google Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: theory simulations, and structure of the pulse. Laser Part. Beams 25, 339346.Google Scholar
Bulanov, S.S., Bychenkov, V.Yu., Krushelnick, K., Maksimchuk, A., Popov, K.I., Rozmus, W. (2010). Swarm of ultra-high intensity attosecond pulses from laser-plasma interaction. J. Phys. 244, 022029/1–4.Google Scholar
Bulanov, S.V., Esirkepov, T.Zh. & Tajima, T. (2003). Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001/1–4.Google Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745757.Google Scholar
Chen, S.Y., Maksimchuk, A. & Umstadter, D. (1998). Experimental observation of Thomson scattering. Nature (London) 396, 653655.Google Scholar
Esirkepov, T.Zh., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic ion-generation in the laser piston regime. Phys. Rev. Lett. 92, 175003/1–4.Google Scholar
Esirkepov, T.Zh., Bulanov, S.V., Kando, M., Pirozhkov, A.S. & Zhidkov, A.G. (2009). The flying mirror: Future brightest X-ray and γ-ray source. Proc. SPIE 7359, 735909/1–11.Google Scholar
Galy, J., Maucec, M., Hamilton, D.J., Edwards, R. & Magill, J. (2007). Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9, 2340.Google Scholar
Kando, M., Fukuda, Y., Pirozhkov, A.S., Ma, J., Daito, I., Chen, L-M., Esirkepov, T.Zh., Ogura, K., Homma, T., Hayashi, Y., Kotaki, H., Sagisaka, A., Mori, M., Koga, J.K., Daido, H., Bulanov, S.V., Kimura, T., Kato, Y. & Tajima, T. (2007). Demonstration of laser frequency upshift by electron density modulation in a plasma wake field. Phys. Rev. Lett. 99, 135001/1–4.CrossRefGoogle Scholar
Kaw, P. & Dawson, J. (1970). Relativistic nonlinear propagation of laser beams in cold overdense plasmas. Phys. Fluids 13, 472481.CrossRefGoogle Scholar
Ledingham, K.D.W. & Galster, W. (2010). Laser driven particle and photon beams and some applications. New J. Phys. 12, 13672630.CrossRefGoogle Scholar
Litvak, A.G. (1970). Finite-amplitude wave beams in magnetoactive plasma. Sov. Phys. JETP 30, 344347.Google Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self modulation and Self focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.Google Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F. & Mainfray, G. (1995). Experimental demonstration of of relativistic self channeling of a multi terawatt laser pulse in an under dense plasma. Phys. Rev. Lett. 74, 29532956.CrossRefGoogle Scholar
Nakamura, T., Koga, J.K., Esirkepov, T.Zh., Kando, M., Korn, G. & Bulanov, S.V. (2012). High-power γ-ray flash generation in ultra intense laser-plasma interactions. Phys. Rev. Lett. 108, 195001/1–5.Google Scholar
Pegoraro, F., Atzeni, S., Borghest, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high power laser-plasma interaction and their applications. Laser Part. Beams 22, 1924.Google Scholar
Pegoraro, F., Bulanov, S.V., Califano, F., Esirkepov, T. Zh., Lisekina, T.V., Naumova, N.M., Rhul, H. & Vshivkov, V.A. (2000). Nonlinear electromagnetic phenomena in the relativistic interaction of ultrahigh intensity laser pulses with plasmas. Laser Part. Beams 18, 381387.Google Scholar
Pegoraro, F., Bulanov, S.V., Califano, F., Esirkepov, T.Zh., Migliozzi, P., Tajima, T. & Terranova, F. (2005). Exploring high-energy physics with laser-driven proton beams. Laser Phys. 15, 250255.Google Scholar
Pirozhkov, A.S., Bulanov, S.V., Esirkepov, T.Z., Mori, M., Sagisaka, A. & Daido, H. (2006). Generation of high energy attosecond pulses by the relativistic irradiance short laser pulse interacting with a thin foil. Phys. Lett. A. 349, 256263.Google Scholar
Von der Linde, D., Engers, T., Jenke, G., Agostini, P., Grillon, G., Nibbering, E., Mysyrowicz, A. & Antonetti, A. (1995). Generation of high order harmonics From solid surfaces by intense femto second laser pulse. Phys. Rev. A. 52, R25R27.CrossRefGoogle Scholar
Zepf, M., Dromey, B., Kar, S., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kneip, S. & McKenna, P. (2007). High harmonics from relativistically oscillating plasma surfaces: A high brightness attosecond source at keV photon energies. Plasma Phys. Contr. Fusion 49, B149B162.Google Scholar