Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:40:56.907Z Has data issue: false hasContentIssue false

Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma

Published online by Cambridge University Press:  13 September 2011

Alireza Paknezhad
Affiliation:
Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Davoud Dorranian*
Affiliation:
Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*
Address correspondence and reprint requests to: Davoud Dorranian, Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Poonak, Hesarak, 14776 Tehran, Iran. E-mail: [email protected]

Abstract

Raman backward scattering is investigated in the interaction of linearly polarized ultra short laser pulse with a homogenous cold underdense magnetized plasma by taking into account the relativistic effect and the effect of nonlinearity up to third order. The plasma is embedded in a uniform magnetic field perpendicular to both of propagation direction and electric vector of the radiation field. Nonlinear wave equation is set up and differential equations, which model the instability, are derived. Using of the Fourier transformation, analytical solutions are obtained for a set of physically relevant initial conditions and the temporal growth rate of instability is calculated. Results are significantly different in comparison with lower order computations. The growth rate of backward Raman scattering shows an increase due to the presence of external magnetic field as well as nonlinear effects.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barr, H.C., Boyd, T.J.M., Gardner, G.A. & Rankin, R. (1984). Stimulated Raman scattering in plasmas produced by short intense laser pulses. Phys. Rev. Lett. ??, 462464.Google Scholar
Barbiellini, G., Longo, F., Gardner, G.A. & Omodei, N. (2008). Stochastic wakefield plasma acceleration in Gamma-ray bursts. Nucl. Instrum. Meth. Phys. Res. A 593, 6768.CrossRefGoogle Scholar
Chen, H.Y., Liu, S.Q. & Li, X.Q. (2011). Modulation instability by intense laser beam in magnetized plasma. Opt. 122, 599603.Google Scholar
Dorranian, D., Starodubtsev, M., Kawakami, H., Ito, H., Yugami, N. & Nishida, Y., (2003). Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction. Phys. Rev. E 68, 026409.CrossRefGoogle ScholarPubMed
Dorranian, D., Ghoranneviss, M., Starodubtsev, M., Ito, H., Yugami, N. & Nishida, Y. (2004). Microwave emission from TW-100 fs laser irradiation of gas jet. Phys. Lett. A 331, 7783.CrossRefGoogle Scholar
Dorranian, D., Ghoranneviss, M., Starodubtsev, M., Yugami, N. & Nishida, Y. (2005). Generation of short pulse radiation from magnetized wake in gas-jet plasma and laser interaction. Laser Part. Beams 23, 583596.CrossRefGoogle Scholar
Drake, J.F., Kaw, P.K., Lee, Y.C. & Schmit, G. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778786.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.Google Scholar
Estabrook, K. & Kruer, W.L. (1983). Theory and simulation of one-dimensional Raman backward and forward scattering. Phys. Fluids 26, 18921904.CrossRefGoogle Scholar
Gill, T.S & Saini, N.S. (2007). Nonlinear interaction of a rippled laser beam with an electrostatic upper hybrid wave in collisional plasma. Laser Part. Beams 25, 283293.Google Scholar
Grebogi, C. & Liu, C.S. (1980). Brillouin and Raman scattering of an extraordinary mode in a magnetized plasma. Phys. Fluids 23, 13301336.CrossRefGoogle Scholar
Guerin, S., Laval, G., Mora, P., Adam, J.C. & Heron, A. (1995). Modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 2, 28072815.Google Scholar
Hassoon, K., Salih, H. & Tripathi, V.K. (2009). Stimulated Raman forward scattering of a laser in a plasma with transverse magnetic field. Phys. Scr 80, 065501.CrossRefGoogle Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Kim, J., Lee, H.J., Suk, H. & Koa, I.S. (2003). Characteristics of pulse compression in laser pulse amplification by stimulated Raman backscattering. Phys. Lett. A 314, 464471.CrossRefGoogle Scholar
Kline, J.L., Montgomery, D.S., Rousseaux, C, Baton, S.D.,Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185190.CrossRefGoogle Scholar
Kruer, W.I. (1998). The Physics of Laser and Plasma Interaction. Menlo Park: Addison-Wesley.Google Scholar
Lifschitz, A.F., Faure, J., Malka, V. & Mora, P. (2005). GeV Wakefield acceleration of low energy electron bunches using Petawatt lasers. Phys. Plasmas 12, 093104.CrossRefGoogle Scholar
Matlis, N.H., Reed, S., Bulanov, S.S., Chvykov, V., Kalintchenko, G., Matsuoka, T., Rousseau, P., Yanovsky, V., Maksimchuk, A., Kalmykov, S., Shvets, G. & Downer, M.C. (2006). Snapshots of laser wakefields. Nat. Phys 2, 749753.CrossRefGoogle Scholar
Mendonc, J.T., Thide, B. & Then, H. (2009). Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum. Phys. Rev. Lett. 102, 185005.Google Scholar
Michel, D.T., Depierreux, S., Stenz, C., Tassin, V. & Labaune, C. (2010). Exploring the saturation levels of stimulated Raman scattering in the absolute regime. Phys. Rev. Lett. 104, 255001.Google Scholar
Mitsuo, K. & Milos, M.S. (2010). Nonlinear Physics of Plasmas. Berlin: Springer-Verlag.Google Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys 78, 309371.CrossRefGoogle Scholar
Purohit, G., Chauhan, P.K. & Sharma, R.P. (2008). Excitation of an upper hybrid wave by a high power laser beam in plasma. Laser Part. Beams 26, 6167.CrossRefGoogle Scholar
Purohit, G., Chauhan, P. & Sharma, R.P. (2009). Resonant excitation of the upper hybrid wave by relativistic cross focusing of two laser beams. Laser Part. Beams 27, 429437.Google Scholar
Purohit, G., Sharma, P. & Sharma, R.P. (2010). Excitation of an upper hybrid wave by two intense laser beams and particle acceleration. Phys. Lett. A 374, 866871.CrossRefGoogle Scholar
Sadighi-Bonami, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.CrossRefGoogle Scholar
Saini, N.S & Gill, T.S. (2004). Enhanced Raman scattering of a rippled laser beam in a magnetized collisional plasma. Laser Part. Beams 22, 3540.Google Scholar
Salimullah, M., Liu, Y.G. & Haines, M.G. (1984). Stimulated Brillouin and Raman scattering of laser radiation at the upper hybrid frequency in a hot, collisionless, magnetized plasma. Phys. Rev. A 30, 32353242.CrossRefGoogle Scholar
Sawan, M.E., Ibrahim, A., Bohm, T.D. & Wilson, P.P.H. (2008). Three-dimensional nuclear analysis of the final optics of a laser driven fusion power plant. Fusion Eng. Des. 83, 18791883.CrossRefGoogle Scholar
Sharma, R.P. & Dragila, R. (1988). Effect of a self-generated dc-magnetic field on forward Raman scattering and hot electrons in laser produced plasmas. Phys. Fluids 31, 16951702.CrossRefGoogle Scholar
Sharma, R.P., Monika, , Sharma, P., Chauhan, P. & Ji, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28, 531537.CrossRefGoogle Scholar
Winjum, B.J., Fahlen, J.E., Tsung, F.S. & Mori, W.B. (2010). Effects of plasma wave packets and local pump depletion in stimulated Raman scattering. Phys. Rev. E 81, 045401.CrossRefGoogle ScholarPubMed
Yampolsky, N.A. & Fisch, N.G. (2009). Effect of nonlinear Landau damping in plasma-based backward Raman amplifier. Phys. Plasmas 16, 072105.Google Scholar