Article contents
Nickel-based super-alloy Inconel 600 morphological modifications by high repetition rate femtosecond Ti:sapphire laser
Published online by Cambridge University Press: 08 December 2009
Abstract
The interaction of Ti:sapphire laser, operating at high repetition rate of 75 MHz, with nickel-based super-alloy Inconel 600 was studied. The laser was emitting at 800 nm and ultrashort pulse duration was 160 fs. Nickel-based super-alloy surface modification was studied in a low laser energy/fluence regime of maximum 20 nJ–15 mJ/cm2, for short (10 s) and long irradiation times (range of minutes). Surface damage threshold of this material was estimated to be 1.46 nJ, i.e., 0.001 J/cm2 in air. The radiation absorbed from Ti:sapphire laser beam under these conditions generates at the surface a series of effects, such as direct material vaporization, plasma creation, formation of nano-structures and their larger aggregates, damage accumulation, etc. Laser induced surface morphological changes observed on Inconel 600 were: (1) intensive removal of surface material with crater like features; (2) material deposition at near and farther periphery and creation of nano-aggregates/nano-structures; (3) sporadic micro-cracking of the inner and outer damage area. Generally, features created on nickel-based super-alloy surface by high repetition rate femtosecond pulses are characterized by low inner/outer damage diameter of less than 11 µm/30 µm and relatively large depth on the order of 150 µm, in both low (10 s) and high (minutes) irradiation time regimes.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2009
References
REFERENCES
- 8
- Cited by