Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T07:33:23.626Z Has data issue: false hasContentIssue false

New scheme to produce aneutronic fusion reactions by laser-accelerated ions

Published online by Cambridge University Press:  04 March 2015

C. Baccou*
Affiliation:
LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau, France
S. Depierreux
Affiliation:
CEA, DAM, DIF, Arpajon, France
V. Yahia
Affiliation:
LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau, France
C. Neuville
Affiliation:
CEA, DAM, DIF, Arpajon, France
C. Goyon
Affiliation:
LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau, France CEA, DAM, DIF, Arpajon, France
R. De Angelis
Affiliation:
Associazione Euratom-ENEA sulla Fusione, Frascati, Rome, Italy
F. Consoli
Affiliation:
Associazione Euratom-ENEA sulla Fusione, Frascati, Rome, Italy
J.E. Ducret
Affiliation:
CELIA (Centre Lasers Intenses et Applications), UMR 5107, Université Bordeaux, CNRS, CEA, Talence, France
G. Boutoux
Affiliation:
CELIA (Centre Lasers Intenses et Applications), UMR 5107, Université Bordeaux, CNRS, CEA, Talence, France
J. Rafelski
Affiliation:
Department of Physics, The University of Arizona, Tucson, Arizona
C. Labaune
Affiliation:
LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau, France
*
Address correspondence and reprint requests to: C. Baccou, LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France E-mail: [email protected]

Abstract

The development of high-intensity lasers has opened the field of nuclear reactions initiated by laser-accelerated particles. One possible application is the production of aneutronic fusion reactions for clean fusion energy production. We propose an innovative scheme based on the use of two targets and present the first results obtained with the ELFIE facility (at the LULI Laboratory) for the proton–boron-11 (p–11B) fusion reaction. A proton beam, accelerated by the Target Normal Sheat Acceleration mechanism using a short laser pulse (12 J, 350 fs, 1.056 µm, 1019 W cm−2), is sent onto a boron target to initiate fusion reactions. The number of reactions is measured with particle diagnostics such as CR39 track-detectors, active nuclear diagnostic, Thomson Parabola, magnetic spectrometer, and time-of-flight detectors that collect the fusion products: the α-particles. Our experiment shows promising results for this scheme. In the present paper, we discuss its principle and advantages compared with another scheme that uses a single target and heating mechanisms directly with photons to initiate the same p–11B fusion reaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajzenberg-Selove, F. (1990). Energy levels of light nuclei A = 12. Nucl. Phys. A 506, 1158.CrossRefGoogle Scholar
Becker, H.W., Rolfs, C. & Trautvetter, H. P. (1987). Low-energy cross sections for 11B(p,3α). Zeitschriftfür Physik A – Atom. Nucl. 327, 341355.Google Scholar
Belyaev, V. S., Matafonov, A. P., Vinogradov, V. I., Krainov, V. P., Lisitsa, V. S., Roussetski, A. S., Ignatyev, G. N. & Andrianov, V. P. (2005). Observation of neutronless fusion reactions in picosecond laser plasmas. Phys. Rev. E 72, 026406.Google Scholar
Belyaev, V. S., Vinogradov, V. I., Matafonov, A. P., Rybakov, S. M., Krainov, V. P., Lisitsa, V. S., Andrianov, V. P., Ignatiev, G. N., Bushuev, V. S., Gromov, A. I., Rusetsky, A. S.&Dravin, V. A. (2009). Excitation of promising nuclear fusion reactions in picosecond laser plasmas. Phys. Atom. Nucl. 72, 10771098.CrossRefGoogle Scholar
Bonnet, T., Comet, M., Denis-Petit, D., Gobet, F., Hannachi, F., Tarisien, M., Versteegen, M. & Aleonard, M. M. (2013). Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 84, 103510.Google Scholar
Fews, A. P., Norreys, P. A., Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N., Lee, P. & Rose, S. J. (1994). Plasma ion emission from high intensity picosecond laser pulse interactions with solid target. Phys. Rev. Lett. 73, 18011804.CrossRefGoogle Scholar
Fleischer, R. L., Price, P. B. & Walker, R. M. (1965). Ion explosion spike mechanism for formation of charged particle tracks in solids. J. Appl. Phys. 36, 36453652.Google Scholar
Floux, F., Cognard, D., Denoeud, L-G., Piar, G., Parisot, D., Bobin, J. L., Delobeau, F. & Fauquignon, C. (1970). Nuclear fusion reactions in solid-deuterium laser-produced plasma. Phys. Rev. A 1, 821824.Google Scholar
Fuchs, J., Antici, P., D'Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C. A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pépin, P. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Krainov, V. P. (2005). Laser induced fusion in boron-hydrogen mixture. Laser Phys. Lett. 2, 8993.Google Scholar
Labaune, C., Baccou, C., Depierreux, S., Goyon, C., Loisel, G., Yahia, V. & Rafelski, J. (2013). Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma. Nat. Comm. 4, 2506.Google Scholar
Lalousis, P., Hora, H. & Moustaizis, S. (2014). Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration. Laser Part. Beams 32, 409411.Google Scholar
Ledingham, K. W. D., McKenna, P., McCanny, T., Shimizu, S., Yang, J. M., Robson, L., Zweit, J., Gillies, J. M., Bailey, J., Chimon, G. N., Clarke, R. J., Neely, D., Norreys, P. A., Collier, J. L., Singhal, R. P., Wei, M. S., Mangles, S. P. D., Nilson, P., Krushelnick, K. & Zepf, M. (2004). High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D: Appl. Phys. 37, 23412345.Google Scholar
Lifschitz, A. F., Farengo, R. & Arista, N. R. (2000). Ionization, stopping, and thermalization of hydrogen and boron beams injected in fusion plasmas. Phys. Plasmas 7, 30363041.Google Scholar
Lindl, J. (1995). Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.Google Scholar
Martinez-Val, J. M., Eliezer, S., Piera, M. & Velarde, G. (1996). Ion acceleration by superintense laser-plasma interaction. Phys. Lett. A 216, 142152.CrossRefGoogle Scholar
McCall, G. H., Young, F., Ehler, A. W., Kephart, J. F. & Godwin, R. P. (1973). Neutron emission from laser-produced plasma. Phys. Rev. Lett. 30, 11161118Google Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.Google Scholar
Moreau, D. C. (1977). Potentiality of the proton-boron fuel for controlled thermonuclear fusion. Nucl. Fusion 17, 1320.Google Scholar
Nevins, W. M. & Swain, R. (2000). The thermonuclear fusion rate coefficient for p-11B reaction. Nucl. Fusion 40, 865872.Google Scholar
Picciotto, A., Margarone, D., Velyhan, A., Belluti, P., Krasa, J., Szydlowsky, A., Bertuccio, G., Shi, Y., Mangione, A., Prokupek, J., Malinowska, A., Krousky, E., Ullschmied, J., Laska, L., Kucharuk, M. & Korn, G. (2014). Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser. Phys. Rev. X 4, 031030.Google Scholar
Snavely, R. A., Zhang, B., Akli, K., Chen, Z., Freeman, R. R., Gu, P., Hatchett, S. P., Hey, D., Hill, J., Key, M. H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A. B., Lasinski, B. F., Lei, A., MacKinnon, A. J., Patel, P., Stephens, R., Tampo, M., Tanaka, K. A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S. C., Yabuuchi, T. & Zheng, J. (2007). Laser generated proton beam focusing and high temperature isochoric heating of solid matter. Phys. Plasmas 14, 092703.Google Scholar
Spencer, I., Ledingham, K. W. D., Singhal, R. P., McCanny, T., McKenna, P., Clark, E. L., Krushelnick, K., Zepf, M., Beg, F. N., Tatarakis, M., Dangor, A.E., Norreys, P.A., Clarke, R. J., Allott, R. M. & Ross, I. N. (2001). Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Instrum. Meth. Phys. Res. B 183, 449458.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 55, 447449.Google Scholar
Tabak, M., Munro, D. H. & Lindl, J. D. (1990). Ignition and high gain with ultrapowerful lasers. Phys. Fluids B 2, 10071014.Google Scholar
von Seggern, H. (1992). X-ray imaging with photostimulable phosphors. Nucl. Instrum. Meth. Phys. Res. A 322, 467471.Google Scholar
Yamanaka, C., Yamanaka, T., Sasaki, T., Yoshida, K. & Waki, M. (1972). Anomalous heating of a plasma by a laser. Phys. Rev. A 6, 23352342.Google Scholar
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. & Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Zepf, M., Clark, E. L., Beg, F. N., Clarke, R. J., Dangor, A. E., Gopal, A., Krushelnick, K., Norreys, P. A., Tatarakis, M., Wagner, U. & Wei, M. S. (2003). Proton acceleration from high-intensity laser interactions with thin foil targets. Phys. Rev. Lett. 90, 064801CrossRefGoogle ScholarPubMed