Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T15:20:23.306Z Has data issue: false hasContentIssue false

Multi-terawatt femtosecond laser system of visible range based on a photochemical XeF(C-A) amplifier

Published online by Cambridge University Press:  27 November 2012

S.V. Alekseev
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
A.I. Aristov
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
N.G. Ivanov
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
B.M. Kovalchuk
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia
V.F. Losev*
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia Tomsk Polytechnic University, Tomsk, Russia
G.A. Mesyats
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
L.D. Mikheev
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
Yu.N. Panchenko
Affiliation:
Lebedev Physical Institute RAS, Moscow, Russia
N.A. Ratakhin
Affiliation:
Institute of High Current Electronics SB RAS, Tomsk, Russia Tomsk Polytechnic University, Tomsk, Russia
*
Address correspondence and reprint requests to: V.F. Losev, Institute of High Current Electronics SB RAS, 2/3 Akademichesky Ave., Tomsk, 634055, Russia. E-mail: [email protected]

Abstract

This paper reports on the creation of a THL-100 multi-terawatt hybrid laser system based on a Start-480M titanium-sapphire starting complex and photochemical XeF(C-A) amplifier with a 25-cm aperture. The complex produces 50-fs radiation pulses of energy up to 5 mJ at a second harmonic wavelength of 475 nm. The active medium of the amplifier is created in a XeF2/N2 mixture under vacuum-ultraviolet radiation of electron beam-excited xenon. The results of first experiments on femtosecond pulse amplification in the active medium of the XeF(C-A) amplifier are presented to demonstrate that a laser beam peak power of 14 TW has been attained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Begishev, I.A., Kalashnikov, M., Karpov, V., Nickles, P. & Schönnagel, H. (2004). Limitation of second-harmonic generation of femtosecond Ti:sapphire laser pulses. J. Opt. Soc. Am. 21, 318321.CrossRefGoogle Scholar
Clady, R., Coustillier, G., Gastaud, M., Sentis, M., Spiga, P., Tcheremiskine, V., Uteza, O., Mikheev, L.D., Mislavskii, V., Chambaret, J.P. & Chẻriaux, G. (2006). Archtitecture of a blue high contrast multiterawatt ultrashort laser. Appl. Phys. 82, 347358.CrossRefGoogle Scholar
Eckstrom, D.J. & Walker, H.C. (1982). Multijoul Performance of the Photolytically Pumped XeF(C-A) Laser. IEEE J. Quant. Eelectron. QE-18, 176181.CrossRefGoogle Scholar
Ginzburg, V.N., Lozhkarev, V.V., Mironov, S.Yu., Potemkin, A.K. & Khazanov, E.A. (2010). Influence of small-scale self-focusing on second harmonic generation in an intense laser field. Quant. Electron. 40, 503507.CrossRefGoogle Scholar
Hofmann, Thomas, Sharp, Tracy E., Dane, C. Brent, Wisoff, Peter J., Wilson, William L., Tittel, Frank K. & Szabo, Gabor. (1992). Characterization of an ultrahigh peak power XeF(C-A) excimer laser system. IEEE J. Quant. Electron. 40, 13661375.CrossRefGoogle Scholar
Ivanov, N., Losev, V., Kovalchuk, B., Mikheev, L., Mesyats, G., Ratakhin, N. & Yastremsky, A. (2009). Project of a 200-terawatt XeF(C-A) femtosecond pulse amplifier pumped by the VUV radiation from an e-beam driven converter. Int. Conf. of Ultrafast Optics – High Fields Short Wavelength, Acachon, France, 193195.Google Scholar
Losev, V., Alekseev, S., Ivanov, N., Kovalchuk, B., Mikheev, L., Mesyats, G., Panchenko, Yu., Ratakhin, N. & Yastremsky, A. (2010). Development of a hybrid (solid state/gas) femtosecond laser system of multiterawatt peak power. Proc. SPIE 7751, 912.Google Scholar
Losev, V., Alekseev, S., Ivanov, N., Kovalchuk, B., Mikheev, L., Mesyats, G., Panchenko, Yu., Puchikin, A., Ratakhin, N. & Yastremsky, A. (2011 a). Development of a 100-terawatt hybrid femtosecond laser system. Proc. SPIE 7993, 421425.Google Scholar
Losev, V., Alekseev, S., Ivanov, N., Kovalchuk, B., Mikheev, L., Mesyats, G., Panchenko, Yu., Puchikin, A., Ratakhin, N. & Yastremsky, A. (2011 b). Prospects of development of hybrid (solid state/gas) ultra-high power femtosecond laser system on the basis of XeF(C-A) amplifier. Opt. Precision Engineer. 19, 252259.CrossRefGoogle Scholar
Losev, V., Ivanov, N., Mikheev, L., Bojchenko, A., Tkachev, A. & Yakovlenko, S. (2006). Project of a 100-terawatt XeF(C-A) femtosecond pulse amplifier pumped by the VUV radiation from an e-beam driven converter. Proc. of the 2nd Int. Conf. on Ultrahigh Intensity Lasers, Cassis, France, 197199.Google Scholar
Mikheev, L., Kuznetsova, T., Sentis, M., Tcheremiskine, V. & Uteza, O. (2006). Prospects of the photochemically driven active media for Exawatt class fs systems. Proc. of the 2nd Int. Conf. on Ultrahigh Intensity Lasers, Cassis, France, 6466.Google Scholar
Mikheev, L.D. (1992). On the possibility of amplification of a femtosecond pulse up to the energy 1 kJ. Laser Part. Beams 10, 473478.CrossRefGoogle Scholar
Mironov, S., Lozhkarev, V., Ginzburg, V. & Khazanov, E. (2009). High-efficiency second-harmonic generation of superintense ultrashort laser pulses. Appl. Opt. 48, 20512055.CrossRefGoogle ScholarPubMed
Ozaki, T., Kieffer, J.-C., Toth, R., Fourmaux, S. & Bandulet, H. (2006). Experimental prospects at the Canadian advanced laser light source facility. Laser Part. Beams 24, 101106.CrossRefGoogle Scholar
Strickland, D. & Mourou, G.A. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Tcheremiskine, V., Uteza, O., Aristov, A., Sentis, M. & Mikheev, L. (2008). Photolytical XeF(C-A) laser amplifier of femtosecond optical pulses: gain measurements and pump efficiency. Appl. Phys. 91, 447454.CrossRefGoogle Scholar