Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T12:24:50.329Z Has data issue: false hasContentIssue false

Multiply ionized carbon plasmas with index of refraction greater than one

Published online by Cambridge University Press:  28 February 2007

J. FILEVICH
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado
J. GRAVA
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado
M. PURVIS
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado
M.C. MARCONI
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado
J.J. ROCCA
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado
J. NILSEN
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
J. DUNN
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California
W.R. JOHNSON
Affiliation:
University of Notre Dame, Indiana

Abstract

For decades the analysis of interferometry have relied on the approximation that the index of refraction in plasmas is due solely to the free electrons. This general assumption makes the index of refraction always less than one. However, recent soft x-ray laser interferometry experiments with Aluminum plasmas at wavelengths of 14.7 nm and 13.9 nm have shown fringes that bend the opposite direction than would be expected when using that approximation. Analysis of the data demonstrated that this effect is due to bound electrons that contribute significantly to the index of refraction of multiply ionized plasmas, and that this should be encountered in other plasmas at different wavelengths. Recent studies of Silver and Tin plasmas using a 46.9 nm probe beam generated by a Ne-like Ar capillary discharge soft-ray laser identified plasmas with an index of refraction greater than one, as was predicted by computer calculations. In this paper we present new interferometric results obtained with Carbon plasmas at 46.9 nm probe wavelength that clearly show plasma regions with an index of refraction greater than one. Computations suggest that in this case the phenomenon is due to the dominant contribution of bound electrons from doubly ionized carbon ions to the index of refraction. The results reaffirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, F., Joyeux, D., Jaegle, P., Carillon, A., Chauvineau, J.P., Jamelot, G., Klisnick, A., Lagron, J.C., Phalippou, D., Ros, D., Sebban, S. & Zeitoun, P. (1997). Interferograms obtained with an X-ray laser by means of a wave front division interferometer. Opt. Commun. 142, 184188.Google Scholar
Attwood, D.T., Sweeney, D.T., Auerbach, J.M. & Lee, P.H.Y. (1978). Interferometric confirmation of radiation-pressure effects in laser-plasma interactions. Phys. Rev. Lett. 40, 184.Google Scholar
Benware, B.R., Macchietto, C.D., Moreno, C.H. & Rocca, J.J. (1998). Demonstration of a high average power tabletop soft x-ray laser. Phys. Rev. Lett. 81, 58045807.Google Scholar
Da Silva, L.B., Barbee Jr., T.W., Cauble, R., Celliers, P., Ciarlo, D., Libby, S., London, R.A., Descamps, D., Lyngå, C., Norin, J., L'Hullier, A., Wahlström, C.-G., Hergott, J.-F., Merdji, H., Salières, P., Bellini, M. & Hänsch, T.W. (1995). Fringe formation and coherence of a soft-X-ray laser beam illuminating a Mach–Zehnder interferometer. Opt. Lett. 25, 135.Google Scholar
Descamps, D., Lyngå, C., Norin, J., L'Huillier, A., Wahlström, C.-G., Hergott, J.-F., Merdji, H., Salières, P., Bellini, Hänsch, T.W. (2000). Opt. Lett. 25, 135137.
Dunn, J., Filevich, J., Smith, R.F., Moon, S.J., Rocca, J.J., Keenan, R., Nilsen, J., Shlyaptsev, V.N., Hunter, J.R., Ng, A. & Marconi, M.C. (2005). Picosecond 14.7 nm interferometry of high intensity laser-produced plasmas. Laser Part. Beams 23, 913.Google Scholar
Fiedorowicz, H. (2005). Generation of soft X-rays and extreme ultraviolet (EUV) using a laser-irradiated gas puff target. Laser Part. Beams 23, 365373.Google Scholar
Filevich, J., Kanizay, K., Marconi, M.C., Chilla, J.L.A. & Rocca, J.J. (2000). Dense plasma diagnostics with an amplitude-division soft-X-ray laser interferometer based on diffraction gratings. Opt. Lett. 25, 356.Google Scholar
Filevich, J., Rocca, J.J., Marconi, M.C., Moon, S.J., Nilsen, J., Scofield, J.H., Dunn, J., Smith, R.F., Keenan, R., Hunter, J.R. & Shlyaptsev, V.N. (2005). Observation of a multiply ionized plasma with index of refraction greater than one. Phys. Rev. Lett. 94, 035005.Google Scholar
Filevich, J., Rocca, J.J., Marconi, M.C., Smith, R.F., Dunn, J., Keenan, R., Hunter, J.R., Moon, S.J., Nilsen, J., Ng, A. & Shlyaptsev, V.N. (2004). Picosecond-resolution soft-X-ray laser plasma interferometry. Appl. Opt. 43, 39383946.Google Scholar
Greenwood, D.A. (1958). The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. London 715, 585.Google Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge, UK: Cambridge University Press.
Johnson, W.R., Guet, C. & Bertsch, G.F. (2006). Optical properties of plasmas based on an average-atom model. J. Quant. Spectrosc. Radiat. Trans. 99, 327340.Google Scholar
Kubo, R. (1957). Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12, 570586.Google Scholar
Kuroda, H., Suzuki, M., Ganeev, R., Zhang, J., Baba, M., Ozaki, T., Wei, Z.Y. & Zhang, H. (2005). Advanced 20 TW Ti:S laser system for X-ray laser and coherent XUV generation irradiated by ultra-high intensities. Laser Part. Beams 23, 183186.Google Scholar
Liberman, D.A. (1982). INFERNO: A better model of atoms in dense plasmas. JQSRT 27, 335.Google Scholar
Liu, Y., Seminario, M., Tomasel, F.G., Chang, C., Rocca, J.J. & Attwood, D.T. (2001). Achievement of essentially full spatial coherence in a high-average-power soft-X-ray laser. Phys. Rev. A 63, 033802.Google Scholar
Mocek, T., Sebban, S., Bettaibi, I., Zeitoun, P., Faivre, G., Cros, B., Maynard, G., Butler, A., McKenna, C.M., Spence, D.J., Gonsavles, A., Hooker, S.M., Vorontsov, V., Hallou, S., Fajardo, M., Kazamias, S., Le Pape, S., Mercere, P., Morlens, A.S., Valentin, C. & Balcou, P. (2005). Progress in optic-field-ionization soft X-ray lasers at LOA. Laser Part. Beams 23, 351356.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.Google Scholar
Nilsen, J. & Scofield, J.H. (2004). Plasmas with an index of refraction greater than 1. Opt. Lett. 29, 2677.Google Scholar
Rocca, J.J., Moreno, C.H., Marconi, M.C. & Kanizay, K. (1999). Soft-X-ray laser interferometry of plasma with a tabletop laser and a Lloyd's mirror. Opt. Lett. 24, 420.Google Scholar
Smith, R.F., Dunn, J., Nilsen, J., Shlyaptsev, V.N., Moon, S., Filevich, J., Rocca, J.J., Marconi, M.C., Hunter, J.R. & Barbee, T.W. (2002). Picosecond x-ray laser interferometry of dense plasmas. Phys. Rev. Lett. 89, 065004.Google Scholar
Tallents, G.J. (1984). Interferometry and refraction measurements in plasmas of elliptical cross-section. J. Phys. D 17, 721.Google Scholar
Tang, H., Guilbaud, O., Jamelot, G., Ros, D., Klisnick, A., Joyeux, D., Phalippou, D., Kado, M., Nishikino, M., Kishimoto, M., Sukegawa, K., Ishino, M., Nagashima, K. & Daido, H. (2004). Diagnostics of laser-induced plasma with soft X-ray (13.9 nm) bi-mirror interference microscopy. Appl. Phys. B 78, 975.Google Scholar
Uspenskii, Y.A., Levashov, V.E., Vinogradov, A.V., Fedorenko, A.I., Kondratenko, V.V., Pershin, Y.P., Zubarev, E.N. & Fedotov, V.Y. (1998). High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 3550 nm. Opt. Lett. 23, 771773.Google Scholar
Wagner, T., Eberl, E., Frank, K., Hartmann, W., Hoffmann, D.H.H. & Tkotz, R. (1996). XUV amplification in recombining z-pinch plasma. Phys. Rev. Lett. 76, 31243127.Google Scholar