Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T04:17:52.812Z Has data issue: false hasContentIssue false

Micro-radiography with laser plasma X-ray source operating in air atmosphere

Published online by Cambridge University Press:  15 June 2010

S.A. Pikuz Jr.
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia Moscow Institute of Physics and Technology, Dolgoprudny, Russia
O.V. Chefonov
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia
S.V. Gasilov
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia
P.S. Komarov
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia
A.V. Ovchinnikov
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia
I.Yu. Skobelev
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia
S.Yu. Ashitkov
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia
M.V. Agranat
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia
A. Zigler
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, Israel
A.Ya. Faenov*
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia Kansai Photon Science Institute JAEA, Kizugawa-city, Kyoto, Japan
*
Address correspondence and reprint requests to: Anatoly Ya. Faenov, Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya str. 13-2, 125412 Moscow, Russia. E-mail: [email protected]

Abstract

K-shell emission from copper target was observed by focusing femtosecond laser pulses very close to the target surface-air interface. It was shown that mechanism of X-ray emission is connected with generation of fast electrons in the air plasma area. Experiments demonstrated that moderate intensity of laser radiation (IL < 1015 W/cm2) was enough to produce considerable flux of X-ray photons of at least 10 keV energy. The parameters of generated X-ray emission were studied. It was found that after propagation through 40 cm thick air layer X-ray spectra consisted of pronounced Kα and Kβ characteristic lines and relatively small Bremsstrahlung continuum. Since transversal source size has an order of a few tens of micrometers, such a source can be used for absorption imaging of micro-objects in standard laboratory conditions. That can be particularly important for diagnostic of medical and biological samples in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bukin, V.V., Vorob'ev, N.S., Garnov, V.I., Lozovoi, V.I., Malyutin, A.A., Shchelev, M.Ya. & Yatskovskii, I.S. (2006). Formation and development dynamics of femtosecond laser microplasma in gases. Quan. Electron. 36, 638.CrossRefGoogle Scholar
Calegari, F., Valentini, G., Vozzi, C., Benedetti, E., Cabanillas-Gonzalez, J., Faenov, A., Gasilov, S., Pikuz, T., Poletto, L., Sansone, G., Villoresi, P., Nisoli, M., De Silvestri, S. & Stagira, S. (2007). Elemental sensitivity in soft x-ray imaging with a laser-plasma source and a color center detector. Opt. Lett. 32, 25932595.CrossRefGoogle Scholar
Chakera, J.A., Ali, A., Tsui, Y.Y. & Fedosejevs, R. (2008). A continuous kilohertz Cu Kα source produced by submillijoule femtosecond laser pulses for phase contrast imaging. Appl. Phys. Lett. 93, 261501.CrossRefGoogle Scholar
Ewald, T., Schwoerer, H. & Sauerbrey, R. (2002). K α-radiation from relativistic laser-produced plasmas. Europhys. Lett. 60, 710716.CrossRefGoogle Scholar
Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Viloresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.CrossRefGoogle Scholar
Fourment, C., Arazam, N., Bonte, C., Caillaud, T., Descamps, D., Dorchies, F., Harmand, M., Hulin, S., Petit, S. & Santos, J.J. (2009). Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources. Rev. Sci. Instrum. 80, 083505.CrossRefGoogle ScholarPubMed
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Abdallah, J. Jr., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters. Laser Part. Beams 22, 215220.CrossRefGoogle Scholar
Fukuda, Y., Faenov, A.Ya., Pikuz, T., Kando, M., Kotaki, H., Daito, I., Ma, J., Chen, L.M., Homma, T., Kawase, K., Kameshima, T., Kawachi, T., Daido, H., Kimura, T., Tajima, T., Kato, Y. & Bulanov, S.V. (2008). Soft X-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters. Appl. Phys. Lett. 92, 121110.CrossRefGoogle Scholar
Gordienko, V.M., Dzhidzhoev, M.S., Zhvania, I.A. & Makarov, I.A. (2007). Increase in the yield of X-ray photons upon two-pulse laser excitation of a solid target in air. Quan. Electron. 37, 599.CrossRefGoogle Scholar
Hatanaka, K., Ono, H. & Fukumura, H. (2008). X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses. Appl. Phys. Lett. 93, 064103.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.CrossRefGoogle Scholar
Hou, B., Mordovanakis, A., Easter, J., Krushelnik, K. & Nees, J.A. (2008). Directional properties of hard x-ray sources generated by tightly focused ultrafast laser pulses. Appl. Phys. Lett. 93, 201503.CrossRefGoogle Scholar
Jiang, Y., Lee, T. & Rose-Petruck, C.G. (2003). Generation of ultrashort hard-x-ray pulses with tabletop laser systems at a 2-kHz repetition rate. J. Opt. Soc. Am. B 20, 229237.CrossRefGoogle Scholar
Koga, J.K., Moribayashi, K., Fukuda, Y., Bulanov, S.V., Sagisaka, A., Ogura, K., Daido, H., Yamagiwa, M., Kimura, T., Fujikawa, T., Ebina, M. & Akihama, K. (2010). Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses. J. Phys. D. 43, 025204.CrossRefGoogle Scholar
Láska, L., Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Margarone, D., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L. & Ullschmied, J. (2009). Experimental studies of generation of ~100 MeV Au-ions from the laser-produced plasma. Laser Part. Beams 27, 137147.CrossRefGoogle Scholar
Martz, H.E. Jr., Kozioziemski, B.J., Lehman, S.K., Hau-Riege, S., Schneberk, D.J. & Barty, A. (2007). Validation of radiographic simulation codes including x-ray phase effects for millimeter-size objects with micrometer structures. J. Opt. Soc. Am. A 24, 169178.CrossRefGoogle ScholarPubMed
Nagao, H., Hironaka, Y., Nakamura, K.G. & Kondo, K. (2004). Hard X-ray emission from a copper target by focusing a picosecond laser beam at 3 × 1013 W/cm2. Jap. J. of Appl. Phys. 43 12071208.CrossRefGoogle Scholar
Repsilber, T., Borghesi, M., Gauthier, J.-C., Löwenbrück, K., Mackinnon, A., Malka, V., Patel, P., Pretzler, G., Romagnani, L., Toncian, T. & Willi, O. (2005). Quantitative analysis of proton imaging measurements of laser-induced plasmas. Appl. Phys. B 80, 905913.CrossRefGoogle Scholar
Roth, M., Audebert, P., Blazevic, A., Brambrink, E., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Hegelich, M., Karsch, S., Ruhl, H., Schollmeier, M. & Stephens, R. (2006). Laser accelerated heavy particles – Tailoring of ion beams on a nano-scale. Opt. Comm. 264, 519524.CrossRefGoogle Scholar
Toth, R., Fourmaux, S., Ozaki, T., Servol, M., Kieffer, J.C., Kincaid, R.E. Jr. & Krol, A. (2007). Evaluation of ultrafast laser-based hard x-ray sources for phase-contrast imaging. Phys. plasmas 14, 053506.CrossRefGoogle Scholar
Wilkins, S.W., Gureyev, T.E., Gao, D., Pogany, A. & Stevenson, A.W. (1996). Phase-contrast imaging using polychromatic hard X-rays. Nat. (London). 384, 335.CrossRefGoogle Scholar
Zhavoronkov, N., Gritsai, Y., Bargheer, M., Woerner, M. & Elsaesser, T. (2005). Generation of ultrashort Ka radiation from quasipoint interaction area of femtosecond pulses with thin foils. Appl. Phys. Lett. 86, 244107.CrossRefGoogle Scholar