Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T22:51:51.066Z Has data issue: false hasContentIssue false

MHD Instabilities in the dynamic model of plasma open switches

Published online by Cambridge University Press:  09 March 2009

P.I. Zubkov
Affiliation:
Lavrentyev Institute of Hydrodynamics SB RAS, 630090 Lavrentyev prosp., 15, Novosibirsk, Russia

Abstract

The dynamic model of plasma open switches is proposed in this article. It is based on the initiation and development of force instabilities (pinches and necks) in spatially inhomogeneous plasma accelerated by the magnetic field pressure. The model proposed does not require the consideration of subtle effects at the pinch implosion stage. It allows one to account for main features of the operation of plasma current open switches within the framework of magnetic hydrodynamics. It also provides quantitative estimates in good agreement with experimental results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullin, E.N. 1987 Fizika Plasmy 13, 1027.Google Scholar
Abdullin, E.N. 1986 Fizika Plasmy 12, 1260.Google Scholar
Abdullin, E.N. 1988 Tezisy Dokl. VII Vsesojuz. Simp. Silnotochn. Elektronike. part III, (Tomsk, Russia) 49.Google Scholar
Alexandrov, A.F. & Rukhadze, A.A. 1976 Physics of High-Current Electric-Discharge Light Sources (Atomizdat, Moscow), p. 184.Google Scholar
Artsimovich, L.A. 1961 Controlled Fusion Reactions (GNFML, Moscow), p. 468.Google Scholar
Artsimovich, L.A. & Sagdeev, R.Z. 1979 Plasma Physics for Physicists (Atomizdat, Moscow), p. 320.Google Scholar
Bystritski, V.M. et al. 1986 Fizika Plasmy 12, 1178.Google Scholar
D'Yachenko, V.F. & Imshennik, V.S. 1974 Voprosy Teorii Plasmy 8, 164.Google Scholar
Golovanov, Yu.P. et al. 1991 Fizika Plasmy 17, 799.Google Scholar
Golovanov, Yu.P. et al. 1988 Fizika Plasmy 14, 880.Google Scholar
Gordeev, A.V. et al. 1991 Fizika Plasmy 17, 650.Google Scholar
Hinshelwood, D.D. et al. 1987 IEEE Trans. Plasma Sci. PS-15, 564.CrossRefGoogle Scholar
Ivanenkov, G.V. 1991 Zhurnal Tekhn. Fiz. 61, 46.Google Scholar
Kadomtsev, B.B. 1979 Non-Linear Waves (Nauka, Moscow), p. 131.Google Scholar
Kokshenev, V.A. 1988 TezisyDokl. VII Vsesojuz. Simp. Silnotochn. Elektronike. part III, (Tomsk, Russia) p. 16.Google Scholar
Kovalchuk, B.M. et al. 1986 Tezisy Dokl. VI Vsesojuz. Simp. Silnotochn. Elektronike. part III, (Tomsk, Russia) p. 139.Google Scholar
Mesyats, G.A. et al. 1985 Fizika Plasmy 11, 109.Google Scholar
Mozgovoi, A.G. 1988 Tezisy Dokl. VII Vsesojuz. Simp. Silnotochn. Elektronike. part III, (Institute of High Current Electronics, Tomsk, Russia) p.7.Google Scholar
Ottinger, P.F. et al. 1984 J. Appl. Phys. 53, 774.CrossRefGoogle Scholar
Sasorov, P.V. 1992 Pisma w Zhurnal Eksper. i Teor. Fiz. 56, 614.Google Scholar
Velikovich, A.L. & Liberman, M.A. 1987 Physics of Shock Waves in Gases and Plasma (Nauka, Moscow), p. 296.Google Scholar
Weber, B.V. et al. 1987 IEEE Trans. Plasma Sci. PS-15, 635.CrossRefGoogle Scholar
Zubkov, P.I. 1993 Zhurn. Prikl. Mekh i Tekhn. Fiziki 3, 24.Google Scholar
Zubkov, P.I. et al. 1990 Zhurn. Prikl. Mekh i Tekhn. Fiziki 2, 182.Google Scholar