Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T06:27:27.141Z Has data issue: false hasContentIssue false

Measurements of angle-of-arrival fluctuations over an 11.8 km urban path

Published online by Cambridge University Press:  21 January 2010

Wenhe Du*
Affiliation:
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China College of Science, Qiqihaer University, Qiqihaer, Heilongjiang, China
Liying Tan
Affiliation:
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
Jing Ma
Affiliation:
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
Siyuan Yu
Affiliation:
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
Yijun Jiang
Affiliation:
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
*
Address correspondence and reprint requests to: W. Du, National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China. E-mail: [email protected]

Abstract

A laser transmission experiment is conducted to examine atmospheric turbulence-induced angle-of-arrival fluctuations over an 11.8 km urban path. The variance of fluctuations, probability density function, power spectrum, and Fried coherence length are investigated based on the analysis of the experimental data collected in each season of a year, respectively. In addition, the daily variations characteristic of path-averaged optical turbulence intensity Cn2 is also studied. At last, the aperture averaging theory is validated. It is anticipated that this work is helpful to the research of optical wave atmospheric propagation and the design of free-space laser optics communication systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.CrossRefGoogle Scholar
Andrews, L.C. & Phillips, R.L. (1998). Laser Beam Propagation Through Random Media. Bellingham: SPIE Optical Engineering Press.Google Scholar
Andrews, L.C., Phillips, R.L. & Yu, P.T. (1995). Optical scintillations and fade statistics for a satellite-communication system. Appl. Opt. 34, 77427751.CrossRefGoogle ScholarPubMed
Bashurin, V.P., Bashurov, V.V., Bogunenko, Yu.D., Bondarenko, G.A., Pletenev, F.A. & Starodubtsev, F.A. (1997). Quantitative measurement feasibility for 3d distributions of hydrodynamic quantities in the turbulent mixing zone of two gases. Laser Part. Beams 15, 7382.CrossRefGoogle Scholar
Chiba, T. (1971). Spot dancing of the laser beam propagated through the turbulent atmosphere. Appl. Opt. 10, 24562461.CrossRefGoogle ScholarPubMed
Chiravalle, V.P. (2006). The K-L turbulence model for describing buoyancy-driven fluid instabilities. Laser Part. Beams 24, 381393.CrossRefGoogle Scholar
Churnside, J.H. (1991). Aperture averaging of optical scintillations in the turbulent atmosphere. Appl. Opt. 30, 19821994.CrossRefGoogle ScholarPubMed
Clifford, S.F. (1971). Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence. J. Opt. Soc. Am. 61, 12851292.CrossRefGoogle Scholar
Coles, W.A. & Frehlich, R.G. (1982). Simultaneous measurements of angular scattering and intensity scintillation in the atmosphere. J. Opt. Soc. Am. 72, 10421047.CrossRefGoogle Scholar
Consortini, A., Cochetti, F., Churnside, J.H. & Hill, R.J. (1993). Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation. J. Opt. Soc. Am. A 10, 23542363.CrossRefGoogle Scholar
Fleury, X., Bouquet, S., Stehlé, C., Koenig, M., Batani, D., Benuzzi-Mounaix, A., Chièze, J.-P., Grandjouan, N., Grenier, J., Hall, T., Henry, E., Lafon, J.-P., Leygnac, S., Malka, V., Marchet, B., Merdji, H., Michaut, C. & Thais, F. (2002). A laser experiment for studying radiative shocks in astrophysics. Laser Part. Beams 20, 263268.CrossRefGoogle Scholar
Fried, D. (1967). Optical heterodyne detection of an atmospherically distorted signal wave front. Proc. IEEE 55, 5767.CrossRefGoogle Scholar
Fried, D.L., Mevers, G.E. & Keister, M.P. (1967). Measurements of laser beam scintillation in the atmosphere. J. Opt. Soc. Am. 57, 787797.CrossRefGoogle Scholar
Giggenbach, D., David, F., Landrock, R., Pribil, K., Fischer, E., Buschner, R. & Blaschke, D. (2002). Measurements at a 61 km near-ground optical transmission channel. Proc. SPIE 4635, 162170.CrossRefGoogle Scholar
Golbraikh, E. & Kopeika, N.S. (2004). Behavior of structure function of refraction coefficients in different turbulent fields. Appl. Opt. 43, 61516156.CrossRefGoogle ScholarPubMed
Han Oh, Y.H., Ricklin, J.C., Oh, E., Doss-Hammel, S. & Eaton, F.D. (2004). Estimating optical turbulence effects on free-space laser communication: Modeling and measurements at arl's a_lot facility. Proc. SPIE 5550, 247255.CrossRefGoogle Scholar
Jiang, Y., Ma, J., Tan, L., Yu, S. & Du, W. (2008). Measurement of optical intensity fluctuation over an 11.8 km turbulent path. Opt. Exp. 16, 69636973.CrossRefGoogle ScholarPubMed
Kazaura, K., Omae, K., Suzuki, T. & Matsumoto, M. (2006). Enhancing performance of next generation fso communication systems using soft computing-based predictions. Opt. Exp. 14, 49584968.CrossRefGoogle ScholarPubMed
Korobkin, V.V. & Romanovsky, M.Yu. (1998). Scaling of plasmas, heated and ponderomotively confined by powerful laser radiation. Laser Part. Beams 16, 235252.CrossRefGoogle Scholar
Kucherenko, Yu.A., Pylaev, A.P., Murzakov, V.D., Belomestnih, A.V., Popov, V.N. & Tyaktev, A.A. (2003). Experimental study into the rayleigh-taylor turbulent mixing zone heterogeneous structure. Laser Part. Beams 21, 375379.CrossRefGoogle Scholar
Majumdar, A.K. & Ricklin, J.C. (2004). Effects of the atmospheric channel on free-space laser communications. Proc. SPIE 5892, 58920 k/1–16.Google Scholar
Parry, G. (1981). Measurement of atmospheric turbulence-induced intensity fluctuation in a laser beam. Opt. Acta 28, 715728.CrossRefGoogle Scholar
Phillips, R.L., Andrews, L.C., Stryjewski, J., Griffis, B., Borbath, M., Galus, D., Burdge, G., Green, K., Kim, C., Stack, D., Harkrider, C., Wayne, D., Hand, D. & Kiriazes, J. (2006). Beam wander experiments: terrestrial path. Proc. SPIE 6303, 630306/1–9.CrossRefGoogle Scholar
Rao, C., Jiang, W. & Ling, N. (1999). Atmospheric parameters measurements for non-kolmogorov turbulence with Shack-Hartmann wave-front sensor. Proc. SPIE 3763, 8491.CrossRefGoogle Scholar
Rao, R. & Gong, Z. (2002). High-frequency behavior of the temporal spectrum of laser beam propagating through turbulence. Proc. SPIE 4926, 175180.CrossRefGoogle Scholar
Rao, R., Wang, S., Liu, X. & Gong, Z. (1999). Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere. J. Opt. Soc. Am. A 16, 27552762.CrossRefGoogle Scholar
Ridley, K.D., Jakeman, E., Bryce, D. & Walson, S.M. (2003). Dual-channel heterodyne measurements of atmospheric phase fluctuations. Appl. Opt. 42, 42614268.CrossRefGoogle ScholarPubMed
Silbaugh, E.E., Welsh, B.M. & Roggemann, M.C. (1996). Characterization of atmospheric turbulence phase statistics using wave-front slope measurements. J. Opt. Soc. Am. A 13, 24532460.CrossRefGoogle Scholar
Stadnik, A.L., Statsenko, V.P., Yanilkin, Yu.V. & Zhmailo, V.A. (1997). Direct Numerical Simulation Of Turbulent Mixing In Shear Flows. Laser Part. Beams 15, 115125.CrossRefGoogle Scholar
Stribling, B.E., Welsh, B.M. & Roggemann, M.C. (1995). Optical propagation in non-kolmogorov atmospheric turbulence. Proc. SPIE 2471, 181196.CrossRefGoogle Scholar
Svanberg, S., Andersson-Engels, S., Cubeddu, R., Förster, E., Grätz, M., Herrlin, K., Hölzer, G., Kiernan, L., Klinteberg, C., Persson, A., Pifferi, A., Sjögren, A. & Wahlström, C.-G. (2000). Generation, characterization, and medical utilization of laser-produced emission continua. Laser Part. Beams 18, 563570.CrossRefGoogle Scholar
Tatarskii, V.I. (1961). Wave Propagation in a Turbulent Medium. New York: Mcgraw-Hill Book Company, Inc.CrossRefGoogle Scholar
Tatarskii, V.I. (1971). The Effects of the Turbulent Atmosphere on Wave Propagation. Israel Program for Scientific Translations.Google Scholar
Tunick, A. (2007 a). Statistical analysis of optical turbulence intensity over a 2.33 km propagation path. Opt. Expr. 15, 36193628.CrossRefGoogle Scholar
Tunick, A. (2007 b). Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path. Opt. Expr. 15, 1411514122.CrossRefGoogle Scholar
Vernin, J. (1992). Atmospheric turbulence profiles. In Wave Propagation in A Random Media (Tatarskii, V.I., Ishimaru, A. & Zavorotny, V.U., Eds.). Bellingham: SPIE Optical Engineering Press.Google Scholar
Wang, Y., Fan, C., Wu, X., Zhan, J. & Gong, Z. (2000). Effects of non-uniform wind on the arrival angle temporal spectrum of spherical wave. Proc. SPIE 4125, 98101.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Zvorykin, V.D., Berthe, L., Boustie, M., Levchenko, A.O. & Ustinovskii, N.N. (2008). Planar shock waves in liquids produced by high-energy krf laser: A technique for studying hydrodynamic instabilities. Laser Part. Beams 26, 461471.CrossRefGoogle Scholar