Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T06:49:50.686Z Has data issue: false hasContentIssue false

Magnetic focusing of emitted ions from laser-generated plasma: enhancement of yield and energy

Published online by Cambridge University Press:  20 February 2017

L. Torrisi*
Affiliation:
Dottorato di Ricerca in Fisica, Dip.to di Scienze Fisiche-MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata (ME), Italy
G. Costa
Affiliation:
Dottorato di Ricerca in Fisica, Dip.to di Scienze Fisiche-MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata (ME), Italy
*
*Address correspondence and reprint requests to: L. Torrisi, Dottorato di Ricerca in Fisica, Dip.to di Scienze Fisiche-MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata (ME), Italy. E-mail: [email protected]

Abstract

A ns Nd:Yag laser, at intensity of 1010 W/cm2 is employed to generate carbon and aluminum non-equilibrium plasmas at a temperature of about 33 eV accelerating ions at energies of the order of 130 eV per charge state. The ion emission occurs manly along the normal to the target surface and can be detected using ion collectors employed in time-of-flight configuration. The application of magnetic field along the axe of the ion emission permits to focalize the ion emission enhancing the detected ion current. The formation of electron traps, due to the magnetic force lines, drives the ion acceleration improving their kinetic energy. Different applications can make use of these results to increase the flow of charged particles and their energy employing appropriate static magnetic fields, as it will be presented and discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M. (2014). Laser-driven ion acceleration: State of the art and emerging mechanisms. Nucl. Instrum. Methods A 740, 69.Google Scholar
COMSOL Multiphysics (2017). Actual website: https://www.comsol.it/comsol-multiphysics Google Scholar
Cutroneo, M., Torrisi, L., Ullschmied, J. & Dudzak, R. (2016). Multi-energy ion implantation from high laser intensity. Nukleonika 61, 109113.Google Scholar
Gammino, S., Torrisi, L., Ciavola, G., Andò, L., Wolowski, J., Laska, L., Krasa, J. & Picciotto, A. (2003). Highly charged heavy ion generation by pulsed laser irradiation. Nucl. Instrum. Methods B 209, 345350.Google Scholar
Laska, L., Krasa, J., Pfeifer, M., Rohlena, K., Gammino, S., Torrisi, L., Andò, L. & Ciavola, G. (2002). Angular distribution of ions emitted from Nd:YAG laser-produced plasma. Rev. Sci. Instrum 73, 654656.CrossRefGoogle Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser–plasma interaction. Rev. Mod. Phys. 85, 751.Google Scholar
NIST (2017). Atomic Spectra Database Ionization Energies Form, actual website 2017: http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html Google Scholar
Shirkov, G.D., and Zschornack, G. (1996). Electron Impact Ion Sources for Highly Charged Heavy Ions. Wiesbaden: Vieweg-Verlag. Vieweg Publ. Federal Republic of Germany, ISBN 3-528-06455-2.Google Scholar
Thum-Jager, A. & Rohr, K. (1999). Angular emission distribution of neutrals and ions in laser ablated particle beams. J. Phys. D: Appl. Phys. 32, 28272831.Google Scholar
Torrisi, L. (2016). Coulomb-Boltzmann-shifted distribution in laser-generated plasmas from 1010 up to 1019 W/cm2 intensity. Radiat. Eff. defects Solids 171, 3444.Google Scholar
Torrisi, L., Cavallaro, S., Cutroneo, M., Giuffrida, L., Krasa, J., Margarone, D., Velyhan, A., Kravarik, J., Ullschmied, J., Wolowski, J., Szydlowski, A. & Rosinski, M. (2013). Deuterium-deuterium nuclear reaction induced by high intensity laser pulses. Appl. Surf. Sci. 272, 4245.CrossRefGoogle Scholar
Torrisi, L., Cutroneo, M. & Ceccio, G. (2015). Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys. Scr. 9, 015603 (9 pp).Google Scholar
Torrisi, L., Cutroneo, M., Ceccio, G., Cannavò, A., Batani, D., Boutoux, G., Jakubowska, K. & Ducret, J.E. (2016). Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime. Phys. Plasmas 23, 043102.Google Scholar
Torrisi, L., Gammino, S., Mezzasalma, A.M., Visco, A.M., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Krása, J., Láska, L., Pfeifer, M., Rohlena, K. & Boody, F.P. (2003). Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser. Appl. Surf. Sci. 227, 164174.Google Scholar
Torrisi, L., Margarone, D., Gammino, S. & Andò, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar
Torrisi, L., Trusso, S., Di Marco, G. & Parisi, P. (2001). Pulsed laser deposition of Hydroxyapatite films by KrF excimer. Phys. Med. 17, 227231.Google Scholar