Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T20:59:45.163Z Has data issue: false hasContentIssue false

Low-energy low-divergence pulsed indium atomic beam by laser ablation

Published online by Cambridge University Press:  06 March 2006

KAMLESH ALTI
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India
ALIKA KHARE
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India

Abstract

This paper reports the formation of low-energy low-divergence pulsed indium atomic beam via ablation of thin film by illumination from the rear side with second harmonic of Q-switched Nd:YAG laser under high vacuum (∼10−5 Torr). Angular divergence of ablated indium atomic, reflectivity modulation of thin film due to ablation, and longitudinal atomic velocity of ablated beam were studied as a function of laser fluence. Atomic force microscope scans of the deposited multiple shots of pulsed atomic beams show the formation of “nano-hills.”

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anan'in, O.B., Bykovskii, Yu.A., Eremin, Yu.V., Stupitskii, E.L., Novikov, I.K. & Frolov, S.P. (1991). Investigation of laser plasma expansion in an ambient gas by high-speed photography. Sov. J. Quant. Electron. 21, 787789.Google Scholar
Bakos, J.S., Földes, I.B., Ignácz, P.N., Kocsis, G., Szigeti, J. & Kovács, J. (1990). Ablation measurement of velocity distribution of neutrals in sodium laser blow-off beam. Opt. Commun. 3, 796800.Google Scholar
Breton, C., de Michelis, C., Hecq, W. & Mattioli, M. (1980). Low energy neutral beam production by laser vaporization of metals. Rev. Phys. Appl. 15, 11931200.Google Scholar
Bruneau, S., Hermann, J., Dumitru, G., Sentis, M. & Axente, E. (2005). Ultra-fast laser ablation applied to deep-drilling of metals. Appl. Surf. Sci. 248, 299303.Google Scholar
Camposeo, A., Cervelli, F., Piombini, A., Fuso, F., Allegrini, M. & Arimondo, E. (2003). A laser cooled atom beam for nanolithography applications. Mat. Sci. Engin. C. 23, 217220.Google Scholar
Chae, H. & Park, S.M. (1997). Expansion dynamics of laser-generated Si atomic beam. Bull Korean Chem. Soc. 18, 448450.Google Scholar
Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser Deposition of Thin Films. New York: John Wiley & Sons.
Friichtenicht, J.F. (1974). Laser-generated pulsed atomic beams. Rev. Sci. Instrum. 45, 5156.Google Scholar
Gamaly, E.G., Luther-Davies, B., Kolev, V.Z., Madsen, N.R., Duering, M. & Rode, A.V. (2005). Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser Part. Beams 23, 167176.Google Scholar
Gerginov, V. & Tanner, C.E. (2003). Fluorescence of highly collimated atomic cesium beam: Theory and experiment. Opt. Commun. 222, 1728.Google Scholar
Kadar-Kallen, M.A. & Bonin, K.D. (1989). Focusing of particle beams using two-stage laser ablation. Appl. Phys. Lett. 54, 22962298.Google Scholar
Kadar-Kallen, M.A. & Bonin, K.D. (1994). Generation of dense, pulsed beams of refractory metal atoms using two-stage laser ablation. Appl. Phys. Lett. 64, 14361438.Google Scholar
Khare, A., Alti, K., Das, S., Patra, A.S. & Sharma, M. (2004). Application of laser matter interaction for generation of small sized materials. J. Rad. Phys. Chem. 70, 553558.Google Scholar
Knops, R.M.S, Koolen, A.E.A., Beijerinck, H.C.W. & van Leeuwen, K.A.H. (1999). Design and construction of a high-precision atomic beam machine for quantum optics and atom optics experiments. Laser Phys. 9, 286292.Google Scholar
Kubota, T. & Takedo, M. (1989). Array illuminator using grating couplers. Opt. Lett. 14, 651652.Google Scholar
Milic, D., Hoogerland, M.D., Baldwin, K.G.H. & Scholten, R.E. (1996). Transverse laser cooling of a velocity-selected sodium atomic beam. Quan. Semiclassical Opt. 8, 629640.Google Scholar
Misra, A. & Thareja, R.K. (1999). Investigation of laser ablated plumes using fast photography. IEEE Trans. Plasma Sci. 27, 15531558.Google Scholar
Swanson, H.E. & Fuyat, R.K. (1954). Standard X-ray diffraction powder patterns. Natl. Bur. Std. (U.S) Circ. 539, 111112.Google Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Viswanathan, R. & Hussla, I. (1986). Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum. J. Opt. Soc. Am. B. 3, 796800.Google Scholar
Weaver, I. & Lewis, C.L.S. (1996). Polar distribution of ablated atomic materials during the pulsed laser deposition of Cu in vacuum: Dependence on focused laser spot size and power density. J Appl. Phys. 79, 72167222.Google Scholar