Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T01:37:18.207Z Has data issue: false hasContentIssue false

Lithium beam generation and focusing with a radial diode on PBFAII

Published online by Cambridge University Press:  16 October 2009

D. J. Johnson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
S. E. Rosenthal
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
R. S. Coats
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
M. P. Desjarlais
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
T. R. Lockner
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
T. A. Mehlhorn
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
T. D. Pointon
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
C. L. Ruiz
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
W. A. Stygar
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
S. A. Slutz
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
D. F. Wenger
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185

Abstract

The performance of a 15-cm-radius applied-magnetic-field ion diode was investigated on the PBFA II accelerator at a power of 23 TW. The power coupling between the accelerator and diode was measured and compared with numerical simulations that show the effects of the electron flow in the MITL. The power coupled to the cathode of the diode was 18 MW. Measurements of the lithium beam generated from an electric-field-emission LiF anode showed a lithium beam power of 9 TW. The lithium beam was ballistically focused in a gas cell filled with 2 torr argon. The resultant focused power density was ∼1.8 TW/cm2 equivalent on a cylindrical target at the centerline of the diode. The focused power was limited by the 20- to 30-mR divergence of the beam caused by the LiF source used and by virtual cathode instabilities in the anode–cathode gap. The ion mode instability in the virtual cathode was studied extensively by measurement of waves in the ion emission pattern from the anode and of the E-P0 correlation between variations in the beam energy and transverse momentum. The instability Played a dominant role in the limitation of the focused lithium power.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, H. & Ziegler, J.F. 1979 The Stopping and Ranges of Ion in Matter, vol. 3 (Pergamon Press, New York).Google Scholar
Anderson, H. & Ziegler, J.F. 1980 The Stopping and Ranges of Ion in Matter, vol. 5 (Pergamon Press, New York).Google Scholar
Bailey, J.E. et al. 1996 In AIP Conference Proceedings #381 ‘Atomic Processes in Plasmas,’ Osterheld, A.L. & Goldstein, W.H. eds. (AIP Press, Woodburym, New York), p. 245.CrossRefGoogle Scholar
Cook, D.L. et al. 1988 In Proc. 7th Inter. Conf. on High Power Beams, Bauer, W. & Schmidt, W., eds. (Kernforschungszentrum Karlsruhe GmbH, Karlsruhe, Germany), p. 35.Google Scholar
Cuneo, M.E. et al. 1997 IEEE Trans. Plasma Sci. 25, 229.CrossRefGoogle Scholar
Desjarlais, M.P. 1989 a Phys. Fluids B 1, 1709.CrossRefGoogle Scholar
Desjarlais, M.P. 1989 b J. Appl Phys. 66, 2888.CrossRefGoogle Scholar
Dreike, P.L. & MILLER, P.A. 1985 J. Appl Phys. 57, 1589.CrossRefGoogle Scholar
Fehl, D.F. et al. 1992 Rev. Sci. Iustrum. 63, 4786.CrossRefGoogle Scholar
Filuk, A.B. et al. 1996 Phys. Rev. Letts. 77, 3557.CrossRefGoogle Scholar
Freeman, J.R. 1981 J. Comput. Phys.z 41, 142.CrossRefGoogle Scholar
Green, T.A. et al. 1995 SAND95–1794, (Sandia National Laboratories, Albuquerque, NM), available from NTIS.Google Scholar
Johnson, D.J. et al. 1983 J. Appl Phys. 54, 2230.CrossRefGoogle Scholar
Johnson, D.J. et al. 1989 In 7th IEEE Pulsed Power Conf. Bernstein, B.H. & Shannon, J.P. eds, (Monterey Cal.), p. 944.CrossRefGoogle Scholar
Kensek, R.P. et al. 1990 Rev. Sci. Instrum. 61, 3247.CrossRefGoogle Scholar
Krall, N.A. 1991 Krall Associates Report KA-91–17, (Del Mar, CA).Google Scholar
Krall, N.A. & Rosentiial, S.E. 1991 J. Appl Phys. 70, 2542.CrossRefGoogle Scholar
Krall, N.A. & Rosentiial, S.E. 1995 a Comp. Phys. Com. 87, 95.CrossRefGoogle Scholar
Krall, N.A. & Rosentiial, S.E. 1995 b Phys. Plasmas 2, 343.CrossRefGoogle Scholar
Leeper, R. J. et al. 1987 Nuc. Instr. Meth. B 24/25, 695.CrossRefGoogle Scholar
Leeper, R.J. et al. 1988 Rev. Sci. Instrum. 59, 8.Google Scholar
Lemke, R.W. & Slutz, S.A. 1995 Phys. Plasmas 2, 549.CrossRefGoogle Scholar
Maenchen, J.E., private communication.Google Scholar
Marion, J.B. & Young, E.C. 1968Nuclear Reaction Analysis Graphs and Tables,’ (North Holland Publishers).Google Scholar
Mehlhorn, T.A. et al. 1994 Proceedings of the 10th International Conference on High Power Particle Beams, San Diego, CA, (NTIS PB95–144317), p. 53.Google Scholar
Mendel, J. R., C.W., & Rosentiial, S.E. 1995 Phys. Plasmas 2, 1331.CrossRefGoogle Scholar
Mix, L.P. et al. 1973 J. Vac. Sci. Technol 10, 951.CrossRefGoogle Scholar
Mix, L.P. et al. 1992 Rev. Sci. Instrum. 63, 4863.CrossRefGoogle Scholar
Panitz, J.A. 1994 J. Vac. Sci. Technol. B. 12, 2889.CrossRefGoogle Scholar
Pointon, T.D. et al. 1994 Phys. Plasmas 1, 429.CrossRefGoogle Scholar
Pointon, T.D. & Desjarlais, M.P. 1996 J. Appl. Phys. 80, 2079.CrossRefGoogle Scholar
Pointon, T.D. & Vesey, R.A. 1997 Phys. of Plasmas (submitted).Google Scholar
Quintenz, J.P. & Seidel, D.B. 1991 In Computer Applications in Plasmas Science and Engineering, Drobot, A.T. ed, (Springer-Verlag, NY), p. 42.CrossRefGoogle Scholar
Quintenz, J.P. et al. 1992 Proc. IEEE 80, 971.CrossRefGoogle Scholar
Quintenz, J.P. et al. 1994 Laser and Particle Beams 12, 283.CrossRefGoogle Scholar
Rosenthal, S.E. 1988 hIEEE International Conf. on Plasma Sci. 2P25, p. 52.Google Scholar
Rosenthal, S.E. 1991 IEEE Trans. Plasma Sci. PS-19, 822.CrossRefGoogle Scholar
Rosenthal, S.E. 1993 IEEE International Conf. on Plasma Sci. 5P23, p. 209.Google Scholar
Savage, M.E. et al. 1990 Rev. Sci. Instrum. 61, 3812.CrossRefGoogle Scholar
Stygar, W.A. et al. 1988 a Rev. Sci. Instrum. 59, 1865.CrossRefGoogle Scholar
Stygar, W.A. et al. 1988 b Rev. Sci. Instrum. 59, 1860.CrossRefGoogle Scholar
Slutz, S.A. et al. 1987 J. Appl. Phys. 61, 4970.CrossRefGoogle Scholar
Slutz, S.A. 1996 Phys. Plasmas 3, 2175.CrossRefGoogle Scholar
Vandevender, J.P. & Cook, D.L. 1986 Science 232, 831.CrossRefGoogle Scholar
Vandevender, J.P. & Bluhm, H.J. 1993 Nuclear Fusion by Inertial Confinement, Velarde, G., Ronen, Y. & Martinez-Val, J.M. eds., (CRC Press, Ann Arbor, USA), p. 455.Google Scholar
Ziegler, J.F. 1990, TRIM-90, copyrighted.Google Scholar