Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T05:48:51.743Z Has data issue: false hasContentIssue false

Layer structure, plasma jet, and thermal dynamics of Cu target irradiated by relativistic pulsed electron beam

Published online by Cambridge University Press:  17 July 2009

Limin Li*
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Lie Liu
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Guoxin Cheng
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Qifu Xu
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Xingjun Ge
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
Jianchun Wen
Affiliation:
College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, People's Republic of China
*
Address correspondence and reprint requests to: Limin Li, College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, People's Republic of China. E-mail: [email protected]

Abstract

This paper, based on a relativistic electron-beam accelerator with inductive energy accumulation, investigates the layer structure, plasma jet, and thermal dynamics of Cu target under the irradiation of pulsed electron beam (~350 kV, ~4 kA, ~300 ns). A description of a relativistic electron beam source with a carbon fiber cathode is presented. After the electron-beam irradiation at ~13 J/cm2 energy density, microcraters with 0.5–1 µm diameter appeared on the target surface, and the target cross section is characterized by multilayer structures with a ~20 µm thickness melting layer and a cellular layer. Further, it was found that the carbon content increased significantly not only on the target surface but also on the cross section. The gas liberation per pulse induced by electron beam is analyzed. A good agreement between the experimental and calculated perveances was observed, with the exception at the end of the accelerating pulse possibly due to the participation of ion flow from the anode target. In the pulsed emission, there existed material transfer from anode to cathode, which is observed by the identification of elemental compositions on cathode surface. As the beam energy is deposited on target surface, the anode plasma jet is generated, and expands toward the cathode at a velocity of ~3 cm/μs. By solving the one-dimensional heat equation, 109 K/s heating rate and 107 K/m temperature gradient can be obtained. After the heating of pulsed electron beam, the thermal conduction is dominant, with a cooling rate on the order of 107 K/s. The relativistic electron beam sources may provide a potential development for target experiments and high energy density physics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beilis, I.I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.CrossRefGoogle Scholar
Chaurasia, S., Munda, D.S., Ayyub, P., Kulkarni, N., Gupta, N.K. & Dhareshwar, L.J. (2008). Laser plasma interaction in copper nano-particle targets. Laser Part. Beams 26, 473478.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.-E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Chuvatin, A.S., Kokshenev, V.A., Aranchuk, L.E., Huet, D., Kurmaev, N.E. & Fursov, F.I. (2006). An inductive scheme of power conditioning at mega-Ampere currents. Laser Part. Beams 24, 395401.CrossRefGoogle Scholar
Clardi, A., Lebedev, S.V., Chittenden, J.P. & Bland, S.N. (2002). Modeling of supersonic jet formation in conical wire array Z-pinches. Laser Part. Beams 20, 255261.Google Scholar
Guan, Q.F., An, C.X., Qin, Y., Zou, J.X., Hao, S.Z., Zhang, Q., Dong, C. & Zou, G.T. (2005). Microstructure induced by stress generated by high-current pulsed electron beam. Acta Phys. Sin. 54, 3927.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Nicolai, P., Stenz, C., Tikhonchuk, V., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Klir, D., Kravarik, J., Kubes, P. & Pisarczyk, P. (2009). Investigations of plasma jet interaction with ambient gases by multi-frame interferometric and X-ray pinhole camera systems. Laser Part. Beams 27, 115122.CrossRefGoogle Scholar
Krasik, Y.E., Dunaevsky, A., Krokhmal, A., Felsteiner, J., Gunin, A.V., Pegel, I.V. & Korovin, S.D. (2001). Emission properties of different cathodes at E ≤ 105 V/cm. J. Appl. Phys. 89, 23792399.CrossRefGoogle Scholar
Latif, A., Anwar, M.S., Aleem, M.A., Rafique, M.S. & Khaleeq-Ur-Rahman, M. (2009). Influence of number of laser shots on laser induced microstructures on Ag and Cu targets. Laser Part. Beams 27, 129136.CrossRefGoogle Scholar
Lau, Y.Y. (2001). Simple theory for the two-dimensional Child-Langmuir law. Phys. Rev. Lett. 87, 278301.CrossRefGoogle ScholarPubMed
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008 a). A diplexer for gigawatt class high power microwaves. Laser Part. Beams 26, 371377.Google Scholar
Li, L.M., Liu, L., Chang, L., Wan, H., Wen, J. & Liu, Y. (2009 a). Characteristics of polymer velvet as field emitters under high-current pulsed discharge. Appl. Surf. Sci. 255, 45634568.CrossRefGoogle Scholar
Li, L.M., Liu, L., Wan, H., Zhang, J., Wen, J. & Liu, Y. (2009 b). Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes. Plasma Sources Sci. Technol. 18, 015011.CrossRefGoogle Scholar
Li, L.M., Liu, L., Wen, J. & Liu, Y. (2009 c). Effects of CsI coating of carbon fiber cathodes on the microwave emission from a triode virtual cathode oscillator. IEEE Trans. Plasma Sci. 37, 1522.CrossRefGoogle Scholar
Li, L.M., Liu, L., Wen, J., Men, T. & Liu, Y. (2008 b). An intense-current electron beam source with low-level plasma formation. J. Phys. D: Appl. Phys. 41, 125201.CrossRefGoogle Scholar
Li, L.M., Liu, L., Xu, Q., Chang, L., Wan, H. & Wen, J. (2009 d). Propagation of individual plasma spots on cathode surface by high-current discharge process. Phys. Lett. A 373, 11651169.CrossRefGoogle Scholar
Li, L.M., Liu, L., Xu, Q., Chen, G., Chang, L., Wan, H. & Wen, J. (2009 e). Relativistic electron beam source with uniform high-density emitters by pulsed power generators. Laser Part. Beams 27, 335344.CrossRefGoogle Scholar
Li, L.M., Liu, L., Xu, Q., Wen, J. & Liu, Y. (2008 c). Design of a simple annular electron beam source and its operating characteristics in single and repetitive shot modes. Rev. Sci. Instrum. 79, 094701.CrossRefGoogle ScholarPubMed
Li, L.M, Men, T., Liu, L. & Wen, J. (2007). Dynamics of virtual cathode oscillation analyzed by impedance changes in high-power diodes. J. Appl. Phys. 102, 123309.CrossRefGoogle Scholar
Liu, J.L., Cheng, X.B., Qian, B.L., Ge, B., Zhang, J.D. & Wang, X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Part. Beams 27, 95102.CrossRefGoogle Scholar
Liu, R., Zou, X., Wang, X., Zeng, N. & He, L. (2008). X-ray emission from an X-pinch and its applications. Laser Part. Beams 26, 455460.CrossRefGoogle Scholar
Mesyats, A. (2000). Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark and the Arc. Moscow: Nauka.Google Scholar
Mirdan, B.M., Jawad, H.A., Batani, D., Conte, V., Desai, T. & Jafer, R. (2009). Surface morphology modifications of human teeth induced by a picosecond Nd:YAG laser operating at 532 nm. Laser Part. Beams 27, 103108.CrossRefGoogle Scholar
Ozur, G.E., Proskurovsky, D.I., Rotshtein, V.P. & Markov, A.B. (2003). Production and application of low-energy, high-current electron beams. Laser Part. Beams 21, 157174.CrossRefGoogle Scholar
Parker, R.K., Anderson, R.E. & Duncan, C.V. (1974). Plasma-induced field emission and the characteristics of high-current relativistic electron flow. J. Appl. Phys. 45, 24632479.CrossRefGoogle Scholar
Qin, Y., Wang, X.G., Dong, C., Hao, S.Z., Liu, Y., Zou, J.X., Wu, A.M. & Guan, Q.F. (2003). Temperature field and formation of crater on the surface induced by high current pulsed electron beam bombardment. Acta Phys. Sin. 52, 3043.Google Scholar
Shiffler, D., Haworth, M., Cartwright, K., Umstattd, R., Ruebush, M., Heidger, S., Lacour, M., Golby, K., Sullivan, D., Duselis, P. & Luginsland, J. (2008 a). Review of cold cathode research at the Air Force Research Laboratory. IEEE Trans. Plasma Sci. 36, 718728.CrossRefGoogle Scholar
Shiffler, D., Heidger, S., Cartwright, K., Vaia, R., Liptak, D., Price, G., Lacour, M. & Golby, K. (2008 b). Materials characteristics and surface morphology of a cesium iodide coated carbon velvet cathode. J. Appl. Phys. 103, 013302.CrossRefGoogle Scholar
Shiffler, D., Ruebush, M., Haworth, M., Umstattd, R., Lacour, M., Golby, K., Zagar, D. & Knowles, T. (2002). Carbon velvet field-emission cathode. Rev. Sci. Instrum. 73, 43584362.CrossRefGoogle Scholar
Stein, J., Fill, E., Habs, D., Pretzler, G. & Witte, K. (2004). Hot electron diagnostics using X-rays and Cerenkov radiation. Laser Part. Beams 22, 315321.CrossRefGoogle Scholar
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.Google Scholar
Tahir, N.A., Matveichev, A., Kim, V., Ostrik, A., Shutov, A., Sultanov, V., Lomonosov, I.V., Piriz, A.R. & Hoffmann, D.H.H. (2009). Three-dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS. Laser Part. Beams 27, 917.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.H., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008). Supershort avalanche electron beam generation in gases. Laser Part. Beams 26, 605617.CrossRefGoogle Scholar
Tarasenko, V.F., Shunailov, S.A., Shpak, V.G. & Kostyrya, I.D. (2005). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Trtica, M.S., Radak, B.B., Gakovic, B.M., Milovanovic, D.S., Batani, D. & Desai, T. (2009). Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser. Laser Part. Beams 27, 8590.CrossRefGoogle Scholar
Vekselman, V., Gleizer, J., Yarmolich, D., Felsteiner, J., Krasik, Y., Liu, L. & Bernshtam, V. (2008). Plasma characterization in a diode with a carbon-fiber cathode. Appl. Phys. Lett. 93, 081503.CrossRefGoogle Scholar
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.CrossRefGoogle Scholar
Wu, P.S., Hao, S.Z., Zhang, X.D. & Dong, C. (2008). Effect of high current pulsed electron beam irradiation on surface morphology and mechanical properties of SKD 11 steel. Trans. Mater. Heat Treatment 29, 168170.Google Scholar
Yatsui, K., Shimiya, K., Masugata, K., Shigeta, M. & Shibata, K. (2005). Characteristics of pulsed power generator by versatile inductive voltage adder. Laser Part. Beams 23, 573581.Google Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar
Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X. & Zhnag, G.X. (2006). A pulsed power generator for x-pinch experiments. Laser Part. Beams 24, 503509.CrossRefGoogle Scholar