Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T20:09:33.363Z Has data issue: false hasContentIssue false

Laser–plasma simulations of astrophysical phenomena and novel applications to semiconductor annealing

Published online by Cambridge University Press:  25 March 2004

J. GRUN
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington DC
M. LAMING
Affiliation:
Space Science Division, Naval Research Laboratory, Washington DC
C. MANKA
Affiliation:
Research Support Instruments, Lanham, Maryland
D.W. DONNELLY
Affiliation:
Department of Physics, Southwest Texas State University, San Marcos, Texas
B.C. COVINGTON
Affiliation:
Department of Physics, Southwest Texas State University, San Marcos, Texas
R.P. FISCHER
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington DC
A. VELIKOVICH
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington DC
A. KHOKHLOV
Affiliation:
Computational Physics Division, Naval Research Laboratory, Washington DC

Abstract

At the frontier of plasma physics and technology are applications of laser-generated plasmas to laboratory simulations of astrophysical phenomena and to industrial processing. This article presents work at the Naval Research Laboratory in both of these areas. We show how laser plasmas are used to measure a blast wave corrugation overstability important in astrophysics. Detailed atomic physics calculations of radiative cooling within the blast front are used to develop a criterion of the existence of the overstability and are used to explain the experimental results. The criterion depends on quantities such as element abundances, densities, temperatures, and blast wave velocities—quantities which can be measured spectroscopically—and therefore used to infer whether astrophysical blast wave nonuniformities are the result of this instability. In other experiments, high-velocity jets are formed in the laboratory using miniature hollow cones. Jets produced by these cones are used to study the physics of jets occurring in supernovae and in star-forming accretion disks. In industrial semiconductor processing, annealing, that is, removing crystal damage and electrically activating the semiconductor, is a critical step. Industrial annealing techniques most often utilize heat generated by an oven, flash lamps, or a low-power laser. During such heating dopants within the semiconductor lattice diffuse and spread. This degrades the performance of circuits in which the individual circuit elements are very close to each other. We are developing an annealing technique in which shock or sound waves generated by a laser plasma are used to anneal the semiconductor. We have demonstrated that the method works over small areas and that it does not lead to significant dopant diffusion.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Back, C.A., Grun, J., Decker, C., Suter, L.J., Davis, J., Landen, O.L., Wallace, R., Hsing, W.W., Laming, J.M., Feldman, U., Miller, M. & Wuest, C. (2001). Efficient multi-keV underdense laser-produced plasma radiators. Phys. Rev. Lett. 87, 275003-1275003-4.Google Scholar
Dawson, J.M. (1964). On the production of plasma by giant pulse lasers. Phys. Fluids 7, 981987.Google Scholar
De Souza, J.P. & Sadana, D.K. (1994). Ion implantation of silicon and gallium arsenide. In Handbook on Semiconductors (Mahajan, S., ed.), Vol. 3, pp. 20332126. Amsterdam: Elsevier.
Donnelly, D.W., Covington, B.C., Grun, J., Fischer, R.P., Peckerar, M. & Felix, C.L. (2001). Athermal annealing of low-energy boron implants in silicon. Appl. Phys. Lett. 78, 20002002.Google Scholar
Donnelly, D.W., Covington, B.C., Grun, J., Hoffman, C.A., Meyer, J.R., Manka, C.K., Glembocki, O., Qadri, S.B. & Skelton, E.F. (1997). Far-infrared spectroscopic, magnetotransport, and x-ray study of athermal annealing in neutron-transmutation-doped silicon. Appl. Phys. Lett. 71, 680682.Google Scholar
Grun, J., Fischer, R.P., Peckerar, M., Felix, C.L., Covington, B.C., Donnelly, D.W., Boro Djordjevic, B., Mignogna, R., Meyer, J.R., Ting, A. & Manka, C.K. (2000a). Athermal annealing of silicon implanted with phosphorus and arsenic. In Rapid Thermal and Other Short Time Processing Technologies I, (Roozeboom, F., Gelpey, J.C., Ozturk, M.C., Reid, K. & Kwong, D.L., eds.), Vol. 2000-9, pp. 107115.
Grun, J., Manka, C.K., Hoffman, C.A., Meyer, J.R., Glembocki, O.J., Kaplan, R., Qadri, S.B., Skelton, E.F., Donnely, D. & Covington, B. (1997). Athermal annealing of silicon. Phys. Rev. Lett. 78, 15841587.Google Scholar
Grun, J., Manka, C.K., Hoffman, C.A., Meyer, J.R., Glembocki, O.J., Qadri, S.B., Skelton, E.F., Donnelly, D. & Covington, B. (1998a). Athermal annealing of neutron-transmutation-doped silicon. In Shock Compression of Condensed Matter—1997 (Schmidt, S.C., Dandekar, D.P. & Forbes, J.W., eds.). pp. 981984. New York: AIP Press.
Grun, J., Stamper, J., Manka, C., Resnick, J., Burris, R. & Crawford, J. (1991). Instability of Taylor-Sedov blast waves propagating in a uniform atmosphere. Phys Rev. Lett. 66, 27382741.Google Scholar
Hsieh, J.C., Fang, Y.K., Chen, C.W., Tsai, N.S., Lin, M.S. & Tseng, F.C. (1994). The origins of the performance degradation of implanted P+ polysilicon gated p-channel MOSFET with/without rapid thermal annealing. IEEE Trans. Electron Devices 41, 692697.Google Scholar
Khokhlov, A.M., Hoeflich, P.A., Oran, E.S., Wheeler, J.C., Wang, L. and Chtchelkanova, A.Yu. (1999). Jet-induced explosions of core collapse supernovae. ApJL 524, L107L110.Google Scholar
Laming, J.M. & Grun, J. (2002). On the dynamical overstability of radiative blast waves: The atomic physics of shock stability. Phys. Rev. Letters 89, 1250002-11250002-4.Google Scholar
Laming, J.M. & Grun, J. (2003). Improved models for the dynamical overstability of radiative blast waves. Phys. Plasmas 10, 16141618.Google Scholar
Liu, R., Lu, C.Y., Sung, J.J., Pai, C.S. & Tsai, N.S. (1995). The effects of rapid thermal processing on ultra-shallow junctions for deep submicron mosfets. Solid State Electron. 38, 14731477.Google Scholar
MacLow, M.-M. & Norman, M.L. (1993). Nonlinear growth of dynamical overstabilities in blast waves. Astrophys. J. 407, 207.Google Scholar
Manka, C., Grun, J., Covington, B.C. & Donnelly, D.W. (1999). Non-thermal process for annealing crystalline materials. U.S. Patent 6001715.
Manka, C.K., Peyser, T.A., Ripin, B.H., Stamper, J.A., Grun, J., Crawford, J., Hassam, A. & Huba, J.D. (1989). Jets in laser-produced plasmas. In Jets in Laser-Produced Plasmas, Laser Interaction with Matter (Velarde, G., Minguez, E. & Perlado, J., eds.) pp. 401404. Singapore: World Scientific Pub. Co.
Rao, M.V., Brookshire, J., Mitra, S., Qadri, S.B., Fischer, R., Grun, J., Papanicolaou, N., Yousuf, M. & Ridgway, M.C. (2003). Athermal annealing of Si-implanted GaAs and InP. J. Appl. Phys. 94, 130135.Google Scholar
Ryu, D., & Vishniac, E.T. (1987). The growth of linear perturbations of adiabatic shock waves. Astrophys. J. 313, 820841.Google Scholar
Tsuchimori, N., Yamanaka, T. & Yamanaka, Ch. (1968). A simulation of space plasma by laser produced plasma. Jpn. J. Appl. Phys. 7, 84.Google Scholar
Vishniac, E.T. (1983). The dynamic and gravitational instabilities of spherical shocks. Astrophys. J. 274, 152167.Google Scholar
Vishniac, E.T., & Ryu, D. (1989). On the stability of decelerating shocks. Astrophys. J. 337, 917926.Google Scholar
Zakharov, Yu.P., Orishich, A.M. & Ponomarenko, A.G. (1986). Laboratory simulation of collisionless coupling between supernova remnants and magnetized interstellar medium. Proc. Int. Workshop on Plasma Astrophys., Sukhumi (ESA SP-251), pp. 3740.Google Scholar