Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T02:19:57.654Z Has data issue: false hasContentIssue false

Laser-induced plasma spectroscopy for mine detection and verification

Published online by Cambridge University Press:  08 June 2006

WOLFGANG SCHADE
Affiliation:
Technische Universität Clausthal, Institut für Physik und Physikalische Technologien, Clausthal, Germany
CHRISTIAN BOHLING
Affiliation:
Technische Universität Clausthal, Institut für Physik und Physikalische Technologien, Clausthal, Germany
KONRAD HOHMANN
Affiliation:
Technische Universität Clausthal, Institut für Physik und Physikalische Technologien, Clausthal, Germany
DIRK SCHEEL
Affiliation:
Technische Universität Clausthal, Institut für Physik und Physikalische Technologien, Clausthal, Germany

Abstract

Laser-induced breakdown spectroscopy (LIBS) in combination with a conventional mine prodder is applied for remote detection of explosives and mine housing materials. High power subnanosecond laser pulses (pulse power Ep = 0.6 mJ and pulse duration Δt = 650 ps) at 1064 nm with a typical repetition rate of 10 kHz are generated by using a passively Q-switched Cr4+:Nd3+:YAG microchip-laser as seed-laser for an Yb-fiber amplifier. In the present investigation, the ratios of “late” and “early” LIBS intensities for the cyanide (CN) plasma emission at 388 nm and for the C-emission at 248 nm are used for data analysis. This allows the classification of different explosives and mine casing materials under real time conditions and also similar applications to materials processing.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altmann, J. (2001). Neue Technologien für die Minensuche. Physik in unserer Zeit 32, 2632.Google Scholar
Bublitz, J., Dölle, C., Schade, W., Hartmann, A. & Horn, R. (2001). Laser-induced breakdown spectroscopy for soil diagnostics. Euro J. Soil Sci. 52, 305312.Google Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.Google Scholar
Gamaly, E.G., Luther-Davies, B., Kolev, V.Z., Madsen, N.R., Duering, M. & Rode, A.V. (2005). Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser Part. Beams 23, 167176.Google Scholar
Gavrilov, S.A., Golishnikov, D.M., Gordienko, V.M., Savel'ev, A.B. & Volkov, R.V. (2004). Efficient hard X-ray source using femtosecond plasma at solid targets with a modified surface. Laser Part. Beams 22, 301306.Google Scholar
Geiser, P., Bohling, C., Willer, U., Schade, W., Reich, M. & Tünnermann, A. (2004). A pulsed laser-source for MIR-LIDAR. Conference on Lasers and Electro-optics. San Francisco: CTuP57.
Höfer, S., Liem, A., Limpert, J., Zellmer, H., Tünnermann, A., Unger, S., Jetschke, S., Müller H.R., &Freitag, I. (2001). Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power. Opt. Lett. 26, 13261328.Google Scholar
Lancaster, D.E., McNesby, K.L., Daniel, R.G. & Miziolek, A.W. (1999). Spectroscopic analysis of fire suppressants and refrigerants by laser induced breakdown spectroscopy. Appl. Opt. 38, 14761480.Google Scholar
Limpert, J., Liem, A., Gabler, T., Zellmer, H., Tünnermann, A., Unger, S., Jetschke, S. & Müller, H.R. (2001). High-average power picosecond Yb-doped fiber amplifier. Opt. Lett. 26, 18491851.Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.Google Scholar
Romano, C., Gräser, S., Faulian, K., Schade, W. & Holl, G. (2004). Application of LIBS Spectroscopy for Remote Bulk Detection of Explosives. Detection of Bulk Explosives (Schubert, H. and Kuznetsov, A, Eds.), pp. 167173. Netherlands: Kluwer Academic Publishers.
Sattmann, R., Mönch, I., Krause, H., Noll, R., Couris, S., Hatziapostolou, A., Mavromanolakis, A., Fotakis, C., Larrauri, E. & Miguel, R. (1998). Laser-induced breakdown spectroscopy for polymer identification. Appl Spectro. 52, 456461.Google Scholar
Schade, W., Holl, G., Holl, A. & Bublitz, J. (2004). European Patent EP 1 443 319 A1.
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O-2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Voss, T., Scheel, D. & Schade, W. (2001). A microchip-laser-pumped DFB polymer-dye laser. Appl. Phys. B 73, 105109.Google Scholar
Wainner, R.T., Harmon, R.S., Miziolek, A.W., McNesby, K.L. & French, P.D. (2001). Analysis of environmental lead contamination. Spectrochim. Acta. B. 56, 777793.Google Scholar
Zayhowski, J.J. (1996). Ultraviolet generation with passively Q-switched microchip lasers. Opt. Lett. 21, 588590.Google Scholar