Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T16:25:03.279Z Has data issue: false hasContentIssue false

Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability

Published online by Cambridge University Press:  09 March 2009

Frederick P. Boody
Affiliation:
Anwenderzentrum, Regensburg Institute of Technology, Hermann Geib Str. 18, 93053 Regensburg, Germany
Reinhard Höpfl
Affiliation:
Anwenderzentrum, Regensburg Institute of Technology, Hermann Geib Str. 18, 93053 Regensburg, Germany
Heinrich Hora
Affiliation:
Anwenderzentrum, Regensburg Institute of Technology, Hermann Geib Str. 18, 93053 Regensburg, Germany University of New South Wales, Sydney 2052, Australia
Jak C. Kelly
Affiliation:
University of New South Wales, Sydney 2052, Australia

Abstract

Extensive studies of ion implantation into near surface areas of materials have demonstrated astonishing changes of such properties as surface tension, friction, and durability. The cost of implanted ions is currently rather high due to the limited ion current density of the usual ion sources, especially if ions from sources other than gaseous plasma must be used. The advent of the laser ion source, which offers many orders of magnitude higher current densities than classical ion sources, may change the scenario for a wide range of applications, making ion implantation as crucial a manufacturing technology in the future for other industries as it is today for microelectronics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apollonov, V.V. et al. 1970 JETP Lett. 11, 252.Google Scholar
Barabash, L.Z. et al. 1984 Laser Part. Beam 2, 49.CrossRefGoogle Scholar
Begay, F. et al. 1983 13th Anomalous Absorption Conference, Banff, June 1983, Los Alamos Nat. Lab. Report LA-UR–83–1603.Google Scholar
Brown, I.G. 1989 The Physics and Technology of Ion Sources (John Wiley, New York).Google Scholar
Bykovsky, Yu.A. et al. 1971 Sov. Phys.-JETP 33, 706.Google Scholar
Conrad, J.R. 1989 Mat. Sci. Eng. A 116, 197.CrossRefGoogle Scholar
Conrad, J.R. et al. 1987 J. Appl. Phys. 62, 4591.CrossRefGoogle Scholar
Geller, R. et al. 1992 Rev. Sci. lustrum. 63, 2795.CrossRefGoogle Scholar
Gitomer, S.J. et al. 1984 Conf. at Internat. Center for Theoretical Physics, Trieste, Italy, September (LANL Research Report, Los Alamos).Google Scholar
Goldsmid, H.J. et al. 1984 Phys. Stat. Sol. A 81, K127.CrossRefGoogle Scholar
Häuser, T. et al. 1992 Phys. Rev. A 45, 1278.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. 1993 Advances in Accelerator Physics and Technology, Schopper, H., ed. (World Scientific, Singapore), p. 466.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. 1996 Laser Part. Beam 14(2).Google Scholar
Hill, C.F. & Langbein, K. 1996 Rev. Sci. Instrum. to be published.Google Scholar
Höpfl, R. et al. 1995 German Patent Application No. 195 12 566.0.Google Scholar
Hora, H. 1969 Z. Phys. 226, 156.CrossRefGoogle Scholar
Hora, H. 1969a Phys. Fluids 12, 182.CrossRefGoogle Scholar
Hora, H. 1975 J. Opt. Soc. Am. 65, 882.CrossRefGoogle Scholar
Hora, H. 1983 Appl. Phys. A 32, 1.CrossRefGoogle Scholar
Hora, H. 1987 Encyclopedia of Physical Sciences and Technology, Vol. 7 (Academic Press, New York), p. 99.Google Scholar
Hora, H. 1991 Plasmas at High Temperature and Densities (Springer-Verlag, Heidelberg, New York).Google Scholar
Hora, H. 1992 Encyclopedia of Physical Sciences and Technology, Vol. 8, 2nd ed. (Academic Press, New York), p. 433.Google Scholar
Hora, H. & Prelas, M.A. 1995 Diamond Films Related Mat. 4, 1376.CrossRefGoogle Scholar
Hora, H. et al. 1989 IEEE Trans. Plasma Sci. PS-17, 284.CrossRefGoogle Scholar
Isenor, N.R. 1964 Appl. Phys. Lett. 4, 152.CrossRefGoogle Scholar
Jones, D.A. et al. 1982 Phys. Fluids 25, 2295.CrossRefGoogle Scholar
Kelly, J.C. et al. 1987 Mat. Res. Soc. Symp. Proc. 95, 35.CrossRefGoogle Scholar
Linlor, W.I. 1963 Appl. Phys. Lett. 3, 210.CrossRefGoogle Scholar
Luther-Davies, B. & Hughes, J.L. 1976 Opt. Comm. 18, 351.CrossRefGoogle Scholar
Oppower, H. 1964 private communication, February.Google Scholar
Oppower, H. et al. 1967 Z. Naturforsch. 22a, 1392.CrossRefGoogle Scholar
Rück, D.M. et al. 1993 Nucl. Instr. and Meth. B80/81, 233.CrossRefGoogle Scholar
Samandi, M. et al. 1992 Surface and Coating Technol. 54–55, 447.CrossRefGoogle Scholar
Savage, J.E. 1984 Metal Prog. 126(11.), p. 41.Google Scholar
Schwarz, H.J. 1971 Laser Interaction and Related Plasma Phenomena, Vol. 1, Schwarz, H. and Hora, H., eds. (Plenum, New York), p. 207.CrossRefGoogle Scholar
Sigrist, M. et al. 1976 Opt. Comm. 18, 605.Google Scholar
Tendys, J. et al. 1988 Appl. Phys. Lett. 53, 2143.CrossRefGoogle Scholar
Townsend, P.D. et al. 1965 Ion Implantation (Academic Press, New York).Google Scholar
Tesmer, J.R. & Nastasi, M., eds. 1995 Handbook of Modern Ion Beam Material Analysis (Materials Research Society, Pittsburgh, PA).Google Scholar
Wagli, P. & Donaldson, T.P. 1978 Phys. Rev. Lett. 40, 875.CrossRefGoogle Scholar
Wei, R. et al. 1990 J. Tribology (Trans. ASME) 112, 27.CrossRefGoogle Scholar
Zheng, L.R. et al. 1989 J. Appl. Phys. 65, 300.CrossRefGoogle Scholar