Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T21:17:15.107Z Has data issue: false hasContentIssue false

Laser-Compton scattering as a tool for electron beam diagnostics

Published online by Cambridge University Press:  21 September 2006

K. CHOUFFANI
Affiliation:
Idaho Accelerator Center, Pocatello, Idaho
F. HARMON
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho
D. WELLS
Affiliation:
Idaho Accelerator Center, Pocatello, Idaho
J. JONES
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho
G. LANCASTER
Affiliation:
Idaho National Laboratory, Idaho Falls, Idaho

Abstract

Laser-Compton scattering (LCS) experiments were carried out at the Idaho Accelerator Center (ICA) using the 5 ns (FWHM) and 22 MeV electron beam. The electron beam was brought to an approximate head-on collision with a 7 ns (FWHM), 10 Hz, 29 MW peak power Nd:YAG laser. We observed clear and narrow X-ray peaks resulting from the interaction of relativistic electrons with the 532 nm Nd:YAG laser second harmonic line on top of a very low bremsstrahlung background. We have developed a method of using LCS as a non-intercepting electron beam monitor. Unlike the method used by Leemans et al. (1996), our method focused on the variation of the shape of the LCS spectrum rather than the LCS intensity as a function of the observation angle in order to extract the electron beam parameters at the interaction region. The electron beam parameters were determined by making simultaneous fits to spectra taken across the LCS X-ray cone. We also used the variation of LCS X-ray peak energy and spectral width as a function of the detector angles to determine the electron beam angular spread, and direction and compared the results to the previous method. Experimental data show that in addition to being viewed as potential bright, tunable and monochromatic X-ray source, LCS can provide important information on electron beam pulse length, direction, energy, angular, and energy spread. Since the quality of LCS X-ray peaks, such as degree of monochromaticity, peak energy and flux, depends strongly on the electron beam parameters, LCS can therefore be viewed as an important non-destructive means for electron beam diagnostics.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arutyunian, F.R. (1963). The Compton effect on relativistic electrons and the possibility of obtaining high energy beams. Phys. Lett. 4, 176178.CrossRefGoogle Scholar
Carroll, F., Mendenhall, M.H., Traeger, R.H., Brau, C. & W. Waters, J.W. (2003). Pulsed Tunable Monochromatic X-Ray Beams from a Compact Source: New Opportunities. Am. J. Roentgenol. 181, 11971202.CrossRefGoogle Scholar
Box, G.E.P. & Draper, N.R. (1965). The Bayesian estimation of common parameters from several responses. Biometrika 52, 355365.CrossRefGoogle Scholar
Chouffani, K., Wells, D., Harmon, F., Jones, J. & Lancaster, G. (2002). Laser-Compton scattering from a 20 MeV electron beam. Nucl. Instr. Meth. A 495, 95106.CrossRefGoogle Scholar
Chouffani, K., Harmon, F., Wells, D., Jones, J. & Lancaster, G. (2006). Determination of Electron Beam Parameters by Means of Laser Compton Scattering. Phys. Rev. ST. AB 9, 050701.Google Scholar
Draper, N.R. & Smith, H. (1998). Applied Regression Analysis. New York: John Wiley & Sons.
Fiorito, R.B. & Rule, D.W. (1994). Optical Transition Radiation Beam Emittance Diagnostics. In AIP Conference Proceedings 319. New York: AIP.
Furman, M.A. & Zisman, M.S. (1999). Luminosity. In Handbook of Accelerator Physics and Engineering (A.W. Chao, &M. Tigner, Eds.). Hackensack, NJ: World Scientific Publishing.
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Hartemann, F.V., Tremaine, A.M., Anderson, S.G., Barty, C.P.J., Betts, S.M., Booth, R., Brown, W.J., Crane, J.K., Cross, R.R., Gibson, D.J., Fittinghoff, D.N., Kuba, J., Le Sage, G.P., Slaughter, D.R., Wootton, A.J., Hartouni, E.P., Springer, P.T., Rosenzweig, J.B. & Kerman, A.K. (2004). Characterization of a bright, tunable, ultrafast Compton scattering X-ray source. Laser Part. Beams 22, 221244.Google Scholar
Jackson, J.D. (1975). Classical Electrodynamics. New York: John Wiley & Sons.
Khokonov, M.K.H. & Carrigan, R.A. (1998). The Relationship of Channeling Radiation to Thomson Scattering and the Relative Efficiency of X-ray Production by Intense Electron Beams. Nucl. Instr. Meth. B 145, 133141.CrossRefGoogle Scholar
Kim, K.J., Chattopadhyay, S. & Shank, C.V. (1994). Generation of femtosecond X-rays by 90° Thomson scattering. Nucl. Instr. Meth. A 341, 351354.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.Google Scholar
Leemans, W.P., Schoenlein, R.W., Volfbeyn, P., Chin, A.H., Glover, T.E., Balling, P., Zolotorev, M., Kim, K.J., Chattopadhyay, S. & Shank, C.V. (1996). X-Ray Based Subpicosecond Electron Bunch Characterization Using 90° Thomson Scattering. Phys. Rev. Lett. 77, 41824185.CrossRefGoogle Scholar
Le Sage, G.P., Cowan, T.E., Fiorito, R.B. & Rule, D.W. (1999). Transverse phase space mapping of relativistic electron beams using optical transition radiation. Phys. Rev. Spec. Top. 2, 122802.Google Scholar
Milburn, R.H. (1963). Electron scattering by an intense polarized photon field. Phys. Rev. Lett. 10, 7577.CrossRefGoogle Scholar
Pogorelsky, I.V., Ben-Zvi, I., Hirose, T., Kashiwagi, S., Yakimenko, V., Kusche, K., Siddons, P., Skaritka, J., Kumita, T., Tsunemi, A., Omori, T., Urakawa, J., Washio, M., Yokoya, K., Okugi, T., Liu, Y., He, P. & Cline, D. (2000). Demonstration of 8 × 1018 photons/second peaked at 1.8 A in a relativistic Thomson scattering experiment. Phys. Rev. Spec. Top. 3, 090702.Google Scholar
Xia, B., Li, Z., Kang, K.J., Huang, W.H., Huang, G., He, X.Z., Du, Y.C. & Tang, C.X. (2004). Evaluation and simulations of a Thomson scattering X-ray source based on ray tracing methods. Laser Part. Beams 22, 355365.Google Scholar