Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T20:02:04.108Z Has data issue: false hasContentIssue false

Laser-ablation and induced nanoparticle synthesis

Published online by Cambridge University Press:  23 October 2013

Dimitri Batani*
Affiliation:
Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence, France
Tommaso Vinci
Affiliation:
LULI, Ecole Polytechnique, Palaiseau, France
Davide Bleiner
Affiliation:
Institute for Applied Physics, University of Bern, Berne, Switzerland
*
Address correspondence and reprint requests to: Dimitri Batani, University Bordeaux, CEA, CNRS, Centre Laser Intense at Applications, UMR 5107, F-33405 Talence, France. E-mail: [email protected]

Abstract

Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Axelbaum, R.L. (1997). “Developments in sodium/halide flame technology for the synthesis of unagglomerated non-oxide nanoparticles.” In Proc. of the Joint NSF-NIST Conference on Nanoparticles: Synthesis, Processing into Functional Nanostructures and Characterization. May 12–13, Arlington, VA.Google Scholar
Barnes, J. & Lyon, S. (1989). SESAME EOS table 3719 for AluminumGoogle Scholar
Batani, D., Stabile, H., Ravasio, A., Lucchini, G., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y.. (2003). “Ablation Pressure Scaling at Short Laser Wavelength“ Physical Review E, 68, 067403.Google Scholar
Batani, D. (2010). “Short-pulse laser ablation of materials at high intensities: influence of plasma effectsLaser and Particle Beams, 28, 235.Google Scholar
Becker, M. F., Brock, J. R., Cai, Hong, Henneke, D. E., Keto, J. W., Lee, Jaemyoung, Nichols, W. T. & Glicksman, H. D.. (1998). “Metal nano-particles generated by laser ablationNanostruct. Mater. 10, 853863.Google Scholar
Berndt, C.C., Karthikeyan, J., Chraska, T., & King, A.H.. (1997). “Plasma spray synthesis of nanozirconia powder “in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Blander, M., Katz, J.L.. (1975). “Bubble nucleation in liquidsAmer. Inst. Chem. Eng. (AIChE) Journal, 21, 833848.Google Scholar
Bleiner, D. & Bogaerts, Annemie. (2006). “Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-samplingSpectrochimica Acta Part B 61, 421432.Google Scholar
Bleiner, D. (2005). “Mathematical modelling of laser-induced particulate formation in direct solid microanalysis, Spectroch. Acta B 60, 4964.Google Scholar
Bulgakova, NM, Bulgakov, AV. (2001). “Pulsed laser ablation of solids: transition from normal vaporization to phase explosionAppl. Phys. A 73, 199.Google Scholar
Marco, Bussoli, Batani, Dimitri, Milani, Marziale, Trtica, Milan, Gakovic, Biljana, Krousky, Edouard. (2007). “Study of Laser Induced Ablation with FIB Devices“ Laser and Particle Beams, Volume 25, Issue 01, pp 121125Google Scholar
Cai, H., Chaudhary, N., Lee, J., Becker, M. F., Brock, J. R. & Keto, J. W.. (1998). “Generation of metal nanoparticles by laser ablation of microspheresJ. Aerosol Sci. 29, 627636.Google Scholar
Calcote, H.F., & Keil, D.G.. (1997). “Combustion synthesis of silicon carbide powder” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Chrisey, D.B., Hubler, G.K.. (eds.) (1994). “Pulsed laser deposition of thin films” Wiley-Interscience, New-YorkGoogle Scholar
De la Mora, J.F., Loscertales, I.G., Rosell-Llompart, J., Serageldin, K., & Brown, S.. (1994). “Electrospray atomizers and ultrafine particles” in Proc. Joint NSF-NIST Conf. on UltraFine Particle Engineering (May 25–27, 1994, Arlington, VA)Google Scholar
Di Bernardo, A., Batani, D., Courtois, C., Cros, B., Matthieussent, G.. (2003). “High Intensity Ultra short laser induced ablation of metal targets in the presence of ambient gasLaser and Particle Beams, 21, 59–64 (2003).Google Scholar
Eidmann, K., Meyer-Ter-Vehn, J., Schlegel, T., Hüller, S. (2000). PRE, 62, 1202.Google Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S.. (2009). “Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysisLaser and Particle Beams, Volume 27, Issue 02, pp 281290Google Scholar
Gamaly, E.G.Rode, A.V., Luther-Davies, B., Tikhonchuk, V.T.. (2002). “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics“ Physics of Plasmas 9 (3), 949957.Google Scholar
Geoghan, DB (1993). “Imaging and blackbody emission spectra of particulates generated in the KrF-laser ablation of BN and YBa2Cu3O7–xAppl Phys Lett 62, 14631465.Google Scholar
Ginzburg, V.L. & Shabanskii, V.P.. (1955). Dokl. Akad. Nauk SSSR 100, 445.Google Scholar
Greer, L.A., Tabat, M.D., Lu, C.. (1997). “Future trends for large-area pulsed laser depositionNuclear Instr. Meth. Phys. Res. B 121, 357Google Scholar
Huisken, F., Hofmeister, H., Kohn, B., Laguna, M.A. & Paillard, V.. (2000). “Laser production and deposition of light-emitting silicon nanoparticlesAppl. Surf. Sci., 154–155, 305313.Google Scholar
Kaganov, M.I., Lifshitz, I.M., & Tanatarov, L.V.. (1957). Zh. Eksp. Teor. fiz.31, 232 [Sov. Phys. JETP 4, 173 (1957)].Google Scholar
Kanavin, A.P. et al. . (1998). Phy. Rev. B, 57(23), 14698Google Scholar
Kandlikar, S.G., Shoji, M., Dhir, V.K.. (Editors) (1999). “Handbook of phase changes” Taylor & Francis GroupGoogle Scholar
Kear, B.H., Sadangi, R.K., & Liao, S.C.. (1997). “Synthesis of WC/Co/diamond nanocomposites” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Kleinert, H. (1997). “Gauge fields in condensed matter” Vol. II, pp. 7431456.Google Scholar
Kokai, F., Koshio, A., Shiraishi, M., Matsuta, T., Shimoda, S., Ishihara, M., Koga, Y., Deno, H.. (2005). “Modification of carbon nanotubes by laser ablationDiamond And Related Materials 14, 724728.Google Scholar
Kung, H.H., & Ko, E.I.. (1996). Chem. Eng. J. 64, 203.Google Scholar
Liley, P.E. (2000). “The spinolidal for a Van der Waals fluid”, International Journal of Mechanical Engineering Education Vol 30 No 2.Google Scholar
Martynyuk, MM. (1978). “Phase explosion of a metastable fluidComb. Expl. & Shock Waves 13, 178191.Google Scholar
Martynyuk, MM. (1983). “Critical point parameters of metalsRuss. J. Phys. Chem. 57, 810821.Google Scholar
Márton, Zs.Landström, L., Boman, M. & Heszler, P.. (2003). “A comparative study of size distribution of nanoparticles generated by laser ablation of graphite and tungstenMater. Sci. and Eng. C 23, 225228.Google Scholar
Messing, G.L., Zhang, S., Selvaraj, U., Santoro, R.J., & Ni, T.. (1994). “Synthesis of composite particles by spray pyrolysis” in Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering (May 25–27, Arlington, VA).Google Scholar
Miotello, A., Kelly, R. (1995). “Critical assessment of thermal models for laser sputtering at high fluencesApp. Phys. Lett. 67 35353537Google Scholar
Nolte, S., et al. (1996). J Opt. soc. Am.B, 14(10), 2716Google Scholar
Danny, Perez & Lewis, Laurent J.. (2003) “Molecular-dynamics study of ablation of solids under femtosecond laser pulsesPhys. Rev. B 67, 184102.Google Scholar
Pratsinis, S.E. (1997). “Precision synthesis of nanostructured particles” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. (1988). “MULTI A computer code for one-dimensional multigroup radiation hydrodynamicsComputer Physics Communications 49, p. 475505.Google Scholar
Rao, N.P., Tymiak, N., Blum, J., Neuman, A., Lee, H.J., Girshick, S.L., McMurry, P.H., & Heberlein, J.. (1997). “Nanostructured materials production by hypersonic plasma particle deposition” in Proc. of the Joint NSF-NIST Conf. on Nanoparticles.Google Scholar
Rethfeld, B., Sokolowski-Tinten, K, von der Linde, D, Anisimov, SI. (2002). “Ultrafast thermal melting of laser-excited solids by homogeneous nucleationPhys. Rev. B, 65, 092103.Google Scholar
Russo, R.E., Mao, X.L., Liu, C. & Gonzalez, J.. (2004). “Laser assisted plasma spectrochemistry: laser ablationJ. Anal. Atom. Spectrom. 19, 10841089.Google Scholar
Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.. (2001). “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation processAppl. Phys. A: Mater. Sci. & Proc. 72, 573580.Google Scholar
Semaltianos, Logothetidis, Perrie, Romani, Potter, Edwardson, French, Sharp, DeardenWatkins, J. Watkins, J. (2010). Nanopart. Res. 12, 573.Google Scholar
Song, KH, Xu, X. (1998). “Explosive phase transformation in excimer laser ablationAppl. Surf. Sci. 127–129, 111.Google Scholar
Trtica, M., Gakovic, B., Maravic, D., Batani, D., & Redaelli, R. (2006). “Surface Modification of Titanium by High Intensity Ultra-short Nd:YAG Laser”, Mater. Sci. Forum, 518, 167172.Google Scholar
Xu, X. (2002). Phase explosion and its time lag in nanosecond laser ablation. Appl. Surf. Sci. 197–198, 6166.Google Scholar
Ying-Long, Wang, Xu, Wei, Zhou, Yang, Chu, Li-Zhi and Guang-Sheng, Fu. (2007). “Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablationLaser and Particle Beams, Volume 25, Issue 01, Mar, pp 913Google Scholar
Willmott, P.R. (2004). “Deposition of complex multielemental thin films.Prog. Surf. Sci. 76, 163.Google Scholar
Zachariah, M.R. (1994). Flame processing, in-situ characterization, and atomistic modeling of nanoparticles in the reacting flow group at NIST. In Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering. May 25–27, Arlington, VA.Google Scholar
Zhigilei, Leonid V. & GarrisBarbara, J. Barbara, J. (1999). Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids. Appl. Phys. Lett. 74, 134.Google Scholar