Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T03:20:37.194Z Has data issue: false hasContentIssue false

Laser wakefield bubble regime acceleration of electrons in a preformed non uniform plasma channel

Published online by Cambridge University Press:  25 September 2012

K.K. Magesh Kumar*
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi, India
V.K. Tripathi
Affiliation:
Physics Department, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: K.K. Magesh Kumar, Physiscs Department, Indian Institute of Technology Delhi, 110016, India. E-mail: [email protected]

Abstract

A model of bubble regime electron acceleration by an intense laser pulse in non uniform plasma channel is developed. The plasma electrons at the front of the pulse and slightly off the laser axis in the plasma channel, experience axial and radial ponderomotive and space charge forces, creating an electron evacuated non uniform ion bubble. The expelled electrons travel along the surface of the bubble and reach the stagnation point, forming an electron sphere of radius re. The electrons of this sphere are pulled into the ion bubble and are accelerated to high energies. The Lorentz boosted frame enabled us to calculate energy gain of a test electron inside the bubble.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amirano, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Dorchies, F., Jacquet, F., Malka, V., Marqus, J.R., Matthieussent, G., Min, P., Modena, A., Mora, P., Morillo, J. & Najmudin, Z. (1998). Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett. 81, 995998.CrossRefGoogle Scholar
Balakirev, V.A., Karas, I.V., Karas, V.I., Levchenko, V.D. & Bornatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.CrossRefGoogle Scholar
Chen, S.H., Tai, L.C., Liu, C.S. & Lin-Liu, Y.R. (2010). Beam energy scaling of a stably operated laser wakefield accelerator. Phys. Plasmas 17, 063109–06311.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.-E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N_2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Dahiya, D., Sajal, V. & Sharma, A.K. (2010). Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple. Appl. Phys. Lett. 96, 021501021503.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C.S., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nat. 431, 535538.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser and Particle Beams 23, 161166.CrossRefGoogle Scholar
Gorbunov, L.M., Kalmykov, S.Yu. & Mora, P. (2005). Laser wakefield acceleration by petawatt ultrashort laser pulses. Phys. Plasmas 12, 033101033110.CrossRefGoogle Scholar
Hogan, M.J., Barnes, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P.O'connell, C.L., Oz, E., Siemann, R.H. & Walz, D.. (2005). Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802054805.CrossRefGoogle Scholar
Kalmykov, S.Y., Beck, A., Yi, S.A., Khudik, V.N., Downer, M.C., Lefebvre, E., Shadwick, B.A. & Umstadter, D.P. (2011). Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime. Phys. Plasmas 18, 056704056712.CrossRefGoogle Scholar
Kim, J.U., Kim, C., Kim, G.H., Hafz, N., Lee, H.J. & Suk, H. (2003). A simulation for electron trapping and acceleration in parabolic density profile and ongoing experimental plan. Proceedings of the 2003 Particle Accelerator Conference 3, 1849–1851.CrossRefGoogle Scholar
Kostyukov, I., Pukhov, A. & Kiselev, S. (2010). Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas 11, 52565264.CrossRefGoogle Scholar
Krishnagopal, S., Samant, S.A., Sarkar, D., Upadhyay, A.K. & Jha, P. (2011). Study of Self-injection of an Electron Beam in a Laser-driven Plasma Cavity, Proceedings of IPAC2011. San Sebastin, Spain.Google Scholar
Liu, C.S. & Tripathi, V.K. (2010). Charged particle acceleration by lasers in plasmas. AIP Conf. Proc. 920, 76–97.CrossRefGoogle Scholar
Lotov, K.V. (2004). Blowout regimes of plasma wakefield acceleration. Phys. Rev. E 69, 046405046417.CrossRefGoogle ScholarPubMed
Lu, W., Huang, C., Zhou, M., Tzoufras, M., Tsung, F.S., Mori, W.B. & Katsouleas, T. (2006). A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13, 056709056721.CrossRefGoogle Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A. & Silva, L.O. (2007). Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel.Beams 10, 061301061312.CrossRefGoogle Scholar
Maksimchuk, A., Reed, S., Bulanov, S.S., Chvykov, V., Kalintchenko, G., Matsuoka, T., Mcguffey, C., Mourou, G., Naumova, N., Nees, J., Rousseau, P., Yanovsky, V., Krushelnick, K., Matlis, N.H., Kalmykov, S., Shvets, G., Downer, M.C., Vane, C.R., Beene, J.R., Stracener, D. & Schultz, D.R. (2008). Studies of laser wakefield structures and electron acceleration in underdense plasmas. Phys. Rev. Lett. 15, 056703056710.Google Scholar
Martins, S.F., Fonseca, R.A., Lu, W., Mori, W.B. & Silva, L.O. (2010). Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nat. Phys. 6, 311316.CrossRefGoogle Scholar
Mora, P. (2009). Particle acceleration in ultra-intense laser plasma interaction. Eur. Phys. J. Special Topics 175, 97104.CrossRefGoogle Scholar
Pukhov, A. & Meyer-Ter-Vehn, J. (2002). Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B: Lasers Opt. 74, 355361.CrossRefGoogle Scholar
Reitsma, A.J.W. & Jaroszynski, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated electrons in laser wakefield acceleration. Laser Part. Beams 22, 407413.CrossRefGoogle Scholar
Rowlands-Rees, T.P., Kamperidis, C., Kneip, S., Gonsalves, A.J., Mangles, S.P.D., Gallacher, J.G., Brunetti, E., Ibbotson, T., Murphy, C.D., Foster, P.S., Streeter, M.J.V., Budde, F., Norreys, P.A., Jaroszynski, D.A., Krushelnick, K., Najmudin, Z. & Hooker, S.M. (2008). Laser-driven acceleration of electrons in a partially ionized plasma channel. Phys. Rev. Lett. 100, 105005105008.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams 27, 223231.CrossRefGoogle Scholar
Siders, C.W., Le Blanc, S.P., Fisher, D., Tajima, T., Downer, M.C., Babine, A., Stepanov, A. & Sergeev, A. (1996). Laser wakefield excitation and measurement by femtosecond longitudinal interferometry. Phys. Rev. Lett. 76, 35703573.CrossRefGoogle ScholarPubMed
Singh, A. & Singh, N. (2011). Relativistic guidance of an intense laser beam through an axially non-uniform plasma channel. Laser Part. Beams 29, 291298.CrossRefGoogle Scholar
Singh, K.P. (2009). Acceleration of electrons generated during ionization of a gas by a nearly flat profile laser pulse. Phys. Plasma 16, 093103093108.CrossRefGoogle Scholar
Sprangle, P., Hafizi, B., Peano, J.R., Hubbard, R.F., Ting, A., Moore, C.I., Gordon, D.F., Zigler, A., Kaganovich, D. & Antonsen, T.M Jr.. (2001). Wakefield generation and GeV acceleration in tapered plasma channels. Phys. Rev. E f63, 056405056415.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Thomas, A.G.R. (2010). Scalings for radiation from plasma bubbles. Phys. Plasmas 17, 056708056719.CrossRefGoogle Scholar
Vay, J.L. (2007). Noninvariance of space- and time-scale ranges under a Lorentz transformation and the implications for the study of relativistic interactions. Phys. Rev. Lett. 98, 130405130408.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011 a). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser Part. Beams 29, 471477.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011 b). Laser focusing and multiple ionization of Ar in a hydrogen plasma channel created by a pre-pulse. Laser Part. Beams 29, 219225.CrossRefGoogle Scholar