Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T15:32:44.877Z Has data issue: false hasContentIssue false

Laser produced thin metallic planar mini-flyer generation using fiber optic plate

Published online by Cambridge University Press:  09 May 2013

Mayank Shukla*
Affiliation:
Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai, India
Sachin Sawant
Affiliation:
Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai, India
Ashish Agrawal
Affiliation:
Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai, India
Yogesh Kashyap
Affiliation:
Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai, India
Tushar Roy
Affiliation:
Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai, India
Amar Sinha
Affiliation:
Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai, India
*
Address correspondence and reprint requests to: Mayank Shukla, Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai 400085, India. E-mail: [email protected]

Abstract

Laser produced planar mini flyer generation has widely gained importance owing to its wide ranging applications in the field of condensed matter, astrophysics, material research, shock phenomenon, etc. Flattop smooth laser beam profile as driver is the primary requirement for planar flyer generation besides special multilayered target geometry. We present here laser produced thin metallic planar mini-flyer generation using a fiber optic plate (FOP) of 8 mm thickness and about 6 µm fiber dimension. This technique is unique in the sense that it doesn't require large length as compared to optical fiber. A Gaussian shape laser beam from a laser oscillator was allowed to fall on the FOP generating a speckle pattern. This pattern was relayed and amplified using lenses and laser amplifiers to achieve energy of about 400 mJ. The beam was focused on a substrate (fused silica) based multilayered target on which flyer disks of different materials such as Al. Cu, Br, and Ta were attached. Velocities as high as 400 m/s was measured for Al flyer of 1.5 mm diameter and thickness 50 µm. Flyer disks were completely recovered after the laser shot. We also present a theoretical analysis along with experimental results of the laser beam smoothing technique using a He-Ne laser and FOP. Each channel of the FOP acts as a small single mode optical fiber. The basic idea was to divide the incoming coherent beam into many beam-lets introducing random distribution in length or/and diameter of optical fibers of FOP. The individual FOP channel acts as a diverging source because of single mode fiber with natural divergence λ/d. However, due to the small randomness in length or diameter, the individual diffraction sources are not in phase. This results in the generation of speckles in both near (Fresnel) and far field (Fraunhoffer) destroys the spatial coherence of the beam.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asay, J.R., Trucano, T.G. & Hawke, R.S. (1990). Production efficiency of thin metal flyers formed by laser ablation. Int. J. Impact Eng. 10, 5156.CrossRefGoogle Scholar
Batani, D., Bleu, C. & Löwer, Th. (2002). Design, simulation and application of phase plates. Eur. Phys. J. D 19, 231243.CrossRefGoogle Scholar
Benuzzi, A., Koenig, M., Faral, B., Krishnan, J., Pisani, F., Batani, D., Bossi, S., Beretta, D., Hall, T., Ellwi, S., Hüller, S., Honrubia, J. & Grandjouan, N. (1998). Preheating study by reflectivity measurements in laser-driven shocks. Phys. Plasmas 5, 24102420.CrossRefGoogle Scholar
Bourne, N.K. (2001). On the laser ignition and initiation of explosives. Proc. R. Soc. (London) 457, 14011426.CrossRefGoogle Scholar
Braga, R.A., Nobre, C.M.B., Costa, A.G., Safadi, T. & Costa Da, F.M. (2011). Evaluation of activity through dynamic laser speckle using the absolute value of the differences. Opt. Commun. 284, 646650.CrossRefGoogle Scholar
Burr, G. (1967). US Patent 3, 340, 807.Google Scholar
Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Intense Dynamic Loading of Condensed Matter. London: Taylor and Francis.Google Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kikenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 21022106.CrossRefGoogle ScholarPubMed
Chiang, F.P. & Kin, C.C. (1982). Strain determination on curved surface using far field objective laser speckels. Opt. Eng. 21, 441446.CrossRefGoogle Scholar
Decoste, R.S., Bodner, E., Ripin, B.H., Mclean, E.A., Obenschain, S.P. & Armstrong, C.M. (1979). Ablative acceleration of laser irradiated thin foils. Phys. Rev. Lett. 42, 1673.CrossRefGoogle Scholar
Deng, X., Liang, X., Chen, Z., Yu, W. & Ma, R. (1986). Uniform illumination of large targets using lens array. Appl. Opt., 25, 377381.CrossRefGoogle ScholarPubMed
Dixit, S.N., Thomas, I.M., Rushford, M.R. & Merril, R., et al. (1994). Kinoform Phase Plates for Tailoring Focal Plane Intensity Profiles. ICF Annual Report. Livermore: Lawrence Livermore National Laboratory. UCRL-LR-105820–94, 152–159.Google Scholar
Garnier, J. & Videau, L. (1997). Statistical analysis of the sizes and velocities of laser hot spots of smoothed beams. Phys. Plasma 8, 49144924.CrossRefGoogle Scholar
Greenway, M.W., Proud, W.G., Field, J.E. & Goveas, S.G. (2003). A laser accelerated flyer system. Int. J. Impact. Eng. 29, 317321.CrossRefGoogle Scholar
Honrubia, J.J., Dezulian, R., Batani, D., Bossi, S., Koenig, M., Benuzzi, A. & Grandjouan, N. (1998). Simulation of preheating effects in shock wave experiments. Laser Part. Beams 16, 1320.CrossRefGoogle Scholar
Kato, Y., Mima, K., Miyanaga, M., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high power lasers for uniform acceleration and plasma instability suppression. Phys. Rev. Lett. 53, 10571065.CrossRefGoogle Scholar
Kawana, A., Kawachi, M., Miyashita, T., Saruwatari, M., Asatani, K., Yamada, J. & Oe, K. (1978). Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength. Opt. Lett. 2, 106108.Google Scholar
O'Keefe, J.D. & Skeen, C.H. (1972). Laser induced stress simulation and impulse augmentation. Appl. Phys. Lett. 21, 464466.CrossRefGoogle Scholar
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Benuzzi, A. & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser produced plasmas. Phys. Rev. E 50, R3314.CrossRefGoogle ScholarPubMed
Krehl, P., Schwirzke, F. & Cooper, A.W. (1975). Correlation of stress-wave profiles and the dynamics of the plasma produced by laser irradiation of plane solid targets. J. Appl. Phys. 46, 4400.CrossRefGoogle Scholar
Labaste, J.L., Doucet, M. & Joubert, P. (1995). Shock Compression of Condensed Matter (Schmidt, S.C. and Tao, W.C., Eds.). New York: AIP, 12131215.Google Scholar
Lehmberg, R.H. & Obenschain, S.P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun. 46, 2731.CrossRefGoogle Scholar
Ling, S., Zhao, J. & Pon, S. (1986). Ordinary illuminating light speckle using optical fiber for surface deformation measurement. Proc. SPIE, 599, 395398.Google Scholar
Lu, J. & Zou, G.P. (2010). Investigation on metal stress corrosion monitoring by laser speckle interferometry device. Proc. SPIE, 7656, 765666.Google Scholar
Miller, W.C., Kishimura, H., Kelly, C.S. & Thadhani, N. (2009). Laser driven miniflyer system for shock compression studies. In Shock Compression of Condensed Matter. College Park, MD: American Institute of Physics, pp. 11471150.Google Scholar
Nakatsuka, H. & Grischkowsky, D. (1981). Recompression of optical pulses broadened by passage through optical fibers. Opt. Lett. 6, 1315.CrossRefGoogle ScholarPubMed
Neff, S., Ford, J., Wright, S., Martinez, D., Plechaty, C., Presura & R. (2009). Magnetically accelerated foils for shock wave experiments. Astrophys. Space Sci. 322, 189193.CrossRefGoogle Scholar
Nobre, C.M.B., Braga, R.A. Jr., Costa, A.G., Cardoso, R.R., Dasilva, W.S. & Sáfadi, T. (2009). Biospeckle laser spectral analysis under Inertia Moment, Entropy and Cross-Spectrum methods. Opt. Commun. 282, 22362242.CrossRefGoogle Scholar
Okada, K., Wakabayashi, K., Takenaka, H., Nagao, H., Kondo, K., Ono, T., Takamatsu, K., Ozaki, N., Nagai, K., Nakai, M., Tanaka, K. & Yoshida, M. (2003). Experimental technique for launching miniature flying plates using laser pulses. Int. J. Impact Eng. 29, 497502.CrossRefGoogle Scholar
Paisley, D.L. (1991). Laser driven flyer plate. US Patent No. 5046423.Google Scholar
Paisley, D.L., Warnes, R.H. & Kopp, R.A. (1991). Laser driven flat plate impacts to 100 GPA with sub-nanosecond pulse duration and resolution for material property studies. Proc. of the APS tropical conference on Shock Compression of Condensed Matter. Williamberg: North Holland.Google Scholar
Paisley, D.L., Swift, D.C., Johnson, R.P., Kopp, R.A. & Kyrala, G.A. (2001). Laser-launched flyer plates and direct laser shocks for dynamic material property measurements. In Shock Compression of Condensed Matter. College Park, MD: American Institute of Physics, 13431346.Google Scholar
Ripin, B.H., Decoste, R., Obenschain, S.P., Bodner, S.E., Mclean, E.A., Young, F.C., Whitlock, R.R., Armstrong, C., Grun, M., Stamper, J.A., Gold, S.H., Nagel, D.J., Lehmberg, R.H. & Mcmohan, J.M. (1980). Laser Plasma interaction and ablative acceleration of thin foils at 1012–1013 Watts/cm2 Phys. Fluids 23, 10121030.CrossRefGoogle Scholar
Robbins, D.L. & Sheffield, S.A. (2000). Miniflyer experiments: spall measurements on uranium. Los Alamos National Laboratory Report, LA-UR-00–0962.Google Scholar
Roybal, R., Stein, C., Miglionico, C. & Shively, J. (1995). Laboratory simulations of hyper velocity debris, Int. J. Impact Eng. 17, 707718.CrossRefGoogle Scholar
Sckupsky, S., Short, R.W., Kessler, T., Craxton, R.S., Letzring, S. & Soures, J.M. (1989). Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys. 66, 3456.Google Scholar
Semenov, D.V., Sidorov, I.S., Nippolainen, E. & Kamshilin, A.A. (2010). Speckle-based sensor system for real-time distance and thickness monitoring of fast moving objects Meas. Sci. Technol. 21, 045304/1–4.CrossRefGoogle Scholar
Setchell, R.E., Trott, W.M., FarnsworthJr., A.V. Jr., A.V., Casteneda, J.N. & Berry, D.M. (2002). Microscale shock wave physics using photonic driver techniques. Sandia Report SAND2002–0005, 1–78.CrossRefGoogle Scholar
Stevenson, R.M., Norman, M.J., Bett, T.H., Pepler, D.A., Danson, C.N. & Ross, I.N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett. 19, 363365.CrossRefGoogle ScholarPubMed
Swift, D.C. (2002). Accuracy of the laser-launched flyer technique for measuring equations of state. Los Alamos National Laboratory Report, LA-UR-03–4150, 1–10.Google Scholar
Swift, D.C., Niemczura, J.C., Paisley, D.L., Johnson, R.P., Luo, S. & Tierney, T.E. (2005). Laser-launched flyer plates for shock physics experiments. Rev. Sci. Instr. 76, 093907/1–9.CrossRefGoogle Scholar
Swift, D.C., Charles, A.F., Clark, A.D., Buttler, T.W., Lyon, M.M. & Rightley, P. (2007). On high explosive launching of projectiles for shock physics experiments. Rev. Sci. Instr. 78, 063904/1–9.CrossRefGoogle ScholarPubMed
Tanaka, K.A., Hara, M., Ozaki, N., Sasatani, Y., Kondo, K., Nakano, M., Nishihara, K., Takenaka, H., Yoshida, M. & Mima, K. (2000). Multi-layered flyer accelerated by laser induced shock waves. Phys. Plasma 7, 676680.CrossRefGoogle Scholar
Wang, J. (2002). Thin-film adhesion measurement by laser-induced stress waves. PhD Thesis. Chicago: University of Illinois.Google Scholar
Watson, S., Gifford, M.J. & Field, J.E. (2000). Integrity of thin, laser-driven flyer plates, J. Appl. Phys. 88, 38593864.CrossRefGoogle Scholar
Veron, D., Ayral, H., Gouedard, C., Husson, D., Lauriou, J., Martin, O., Meyer, B., Rostaing, M. & Sauteret, C. (1988). Optical spatial smoothing of Nd-glass laser beam. Opt. Commun. 65, 4246.CrossRefGoogle Scholar