Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T12:38:43.687Z Has data issue: false hasContentIssue false

Laser focusing and multiple ionization of Ar in a hydrogen plasma channel created by a pre-pulse

Published online by Cambridge University Press:  06 April 2011

Updesh Verma*
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
A.K. Sharma
Affiliation:
Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Updesh Verma, Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: [email protected]

Abstract

A model for plasma channel formation by a laser pre-pulse in a low Z gas (Hydrogen) embedded with high Z atoms (Ar) is developed. The laser of intensity I ≅ 1014 W/cm2 ionizes hydrogen atoms fully whereas Ar atoms are ionized only singly. After the first pulse is gone, plasma expands on the time scale of a nanosecond to produce a hydrogen plasma channel with minimum density on the axis. A second intense short pulse laser of intensity I ≥ 1016 W/cm2 gets focused. It tunnel ionizes the remaining Ar. The Ar acquires Ar8+ charge state after loosing 8 ions and acquires Ne like configuration and could emit X-rays.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexeev, I., Ting, A.C., Gordon, D.F., Penano, J.R., Sprangle, P. & Briscoe, E. (2005). Ultraviolet light generation by intense laser filaments propagating in air. doi:10.1109/CLEO.2005.201721.CrossRefGoogle Scholar
Butler, A., Gonsalves, A.J., McKenna, C.M., Spence, D.J., Hooker, S.M., Sebban, S., Mocek, T., Bettaibi, I. & Cros, B. (2003). Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide. Phys. Rev. Lett. 91, 205001/4.CrossRefGoogle Scholar
Chou, M.-C., Lin, P.-H., Lin, C.-A., Lin, J.-Y., Wang, J. & Chen, S.-Y. (2007). Dramatic enhancement of optical-field-ionization collisional-excitation X-ray lasing by an optically preformed plasma waveguide. Phys. Rev. Lett. 99, 063904/8.CrossRefGoogle ScholarPubMed
Durfee, C.G. III & Milchberg, H.M. (1993). Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 24092412.CrossRefGoogle ScholarPubMed
Durfee, C.G. III, Lynch, J. & Milchberg, H.M. (1995). Development of a plasma waveguide for high-intensity laser pulses. Phys. Rev. E 51, 23682389.Google Scholar
Geddes, C.G.R., Toth, C.S., Van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.CrossRefGoogle ScholarPubMed
Gizzi, L.A., Galimberti, M., Giulietti, A., Giulietti, D., Tomassini, P., Borghesi, M., Campbell, D.H., Schiavi, A. & Willi, O. (2001). Relativistic laser interactions with preformed plasma channels and gamma-ray measurements. Laser Part. Beams 19, 181186.Google Scholar
Gopal, A., Sharma, A.K. & Tripathi, V.K. (2000). Temporal evolution of laser plasma channeling in a high-z plasma embedded with light ions. Phys. Scrip. 61, 617.CrossRefGoogle Scholar
Kumar, A., Pandey, B.K. & Tripathi, V.K. (2010). Charged particle acceleration by electron Bernstein wave in a plasma channel. Laser Part. Beams 28, 409414.Google Scholar
Kumar, N. & Tripathi, V.K. (2005). Self-defocusing/focusing of a relativistic laser pulse in a multiple-ionizing gas. Eur. Phys. J. D 32, 6368.Google Scholar
Milchberg, H.M., Durfee III, C.G. & Lynch, J. (1995). Application of a plasma waveguide to soft-X-ray lasers. J. Opt. Soc. Am. B 12, 731737.CrossRefGoogle Scholar
Mocek, T., McKenna, C.M., Cros, B., Sebban, S., Spence, D.J., Maynard, G., Bettaibi, I., Vorontsov, V., Gonsavles, A.J. & Hooker, S.M. (2005). Dramatic enhancement of XUV laser output using a multimode gas-filled capillary waveguide. Phys. Rev. A 71, 013804013808.Google Scholar
Panwar, A. & Sharma, A.K. (2009). Self-phase modulation of a laser in self created plasma channel. Laser Part. Beams 27, 249253.CrossRefGoogle Scholar
Penache, D., Niemann, C., Tauschwitz, A., Knobloch, R., Neff, S., Birkner, R., Geißel, M., Hoffmann, D.H.H., Presura, R., Penache, C., Roth, M. & Wahl, H. (2002). Experimental investigation of ion beam transport in laser initiated plasma channels. Laser Part. Beams 20, 559563.CrossRefGoogle Scholar
Rocca, J.J., Shlyaptsev, V., Tomasel, F.G., Cortazar, O.D., Hartshorn, D. & Chilla, J.L.A. (1994). Demonstration of a discharge pumped table-top soft-X-ray laser. Phys. Rev. Lett. 73, 21922195.CrossRefGoogle ScholarPubMed
Verma, U. & Sharma, A.K. (2009). Effect of self focusing on the prolongation of laser produced plasma channel. Laser Part. Beams 27, 3339.CrossRefGoogle Scholar
Woste, L., Frey, S. & Wolf, J.P. (2006). LIDAR-monitoring of the air with femtosecond plasma channels. Adv. Atom., Mole. Opt. Phys. 53, 413441.Google Scholar
Yu, W., Cao, L., Yu, M.Y., Cai, H., Xu, H., Yang, X., Lei, A., Tanaka, A. & Kosama, R. (2009). Plasma channeling by multiple short-pulse lasers. Laser Part. Beams 27, 109114.Google Scholar
Zhao, Y.P., Xie, Y., Wang, Q. & Liu, T. (2008). Enhancement of Ne-like Ar 46.9 nm laser output by mixing appropriate He ratio at low pressure. Eur. Phys. J. D. 49, 379382.CrossRefGoogle Scholar