Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:56:51.192Z Has data issue: false hasContentIssue false

Laser driven electron acceleration in a CNT embedded gas jet target

Published online by Cambridge University Press:  15 August 2014

Ashok Kumar*
Affiliation:
Department of Physics, AIAS, Amity University, Noida, India
Deepak Dahiya
Affiliation:
Department of Physics, IIT Delhi, New Delhi, India
V. K. Tripathi
Affiliation:
Department of Physics, IIT Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Ashok Kumar, Department of Physics, AIAS, Amity University, Noida, UP, 201303, India. E-mail: [email protected]

Abstract

The bubble regime acceleration of electrons by a short pulse laser in a carbon nanotube (CNT) embedded plasma is investigated, employing two-dimensional Particle-in-Cell simulations. The laser converts the CNT placed on the laser axis into dense plasma and expels the electrons out, to form a co-moving positive charged sheet inside the bubble. The additional field generated due to sheet enhances the energy of the monoenergetic bunch by about 5% and their number by 5–20%. For a typical 40 fs, 7.5 × 1019 Wcm−2 pulse in an underdense plasma of density n0, CNT of thickness 25 nm and electron density 30n0, produces a monoenergetic bunch of 115 MeV with 5% energy spread. When CNT density is raised to 90n0, the energy gain, energy spread and accelerated charge increases further. The analytical framework supports these features.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagchi, S., Kiran, P.P., Yang, K., Rao, A.M., Bhuyan, M.K., Krishnamurthy, M. & Kumar, G.R. (2011). Bright, low debris, ultra short hard X-ray table top source using carbon nanotubes. Phys. Plasmas 18, 014502.CrossRefGoogle Scholar
Dahiya, D., Sajal, V. & Tripathi, V.K. (2010). Self-injection of electrons in a laser wakefield accelerator by using longitudinal density ripple. Appl. Phy. Lett. 96, 021501.CrossRefGoogle Scholar
Davoine, X., Lefebvre, E., Rechatin, C., Faure, J. & Malka, V. (2009). Cold optical injection producing monoenergetic, multi-GeV electron bunches. Phys. Rev. Lett. 102, 065001.CrossRefGoogle ScholarPubMed
Esarey, E., Hubbard, R.F., Leemans, W.P., Ting, A. & Sprangle, P. (1997). Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P.Burgy, F. & Malka, V. (2004). A laser- plasma accelerator producing monoenergetic electron beams. Nature London 431, 541.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malik, V. (2006). Controlled injections and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma channel guiding. Nature 431, 538.CrossRefGoogle ScholarPubMed
Gu, Y.J., Zhu, Z., Kong, Q., Li, Y.Y., Li, X.F., Chen, C.Y. & Kawata, S. (2011). Laser guiding plasma channel formation criterion in highly relativistic regime. Appl. Phys. Lett. 99, 241501.CrossRefGoogle Scholar
Hafz, N.A.M., Jeong, T.M., Choi, I.W., Lee, S.K., Pae, K.H., Kulagin, V.V., Sung, J.H., Yu, T.J., Hong, K.H., Hosokai, T., Vary, J.R., Ko, D.K. & Lee, J. (2008). Stable generation of GeV class electron beams from self-guided laser-plasma channels. Nat. Photon. 2, 571.CrossRefGoogle Scholar
Hemker, R.G., Tzeng, K.C., Mori, W.B., Clayton, C.E. & Katsouleas, T. (1998). Computer simulations of cathodeless, high-brightness electron beam production by multiple laser beams in plasmas. Phys. Rev. E 57, 5920.CrossRefGoogle Scholar
Hidding, B., Konigstein, T., Osterholz, J., Karsch, S., Willi, O. & Pretzler, G. (2010). Monoenergetic energy doubling in a hybrid laser-plasma wakefield accelerator. Phys. Rev. Lett. 104, 195002.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Jha, P., Saroch, A. & Mishra, A.K. (2013). Wakefield generation and electron acceleration by intense super-Gaussian laser pulses propagating in plasma. Laser Part. Beams 31, 583588.CrossRefGoogle Scholar
Jokar, F. & Eslami, E. (2012). Study of the effect of laser parameters on wakefield excitation in femtoseconds pulsed laser-plasma interaction using PIC method. Optik 123, 1947.CrossRefGoogle Scholar
Joshi, C. (2007). The development of laser and beam driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.CrossRefGoogle Scholar
Kalmykov, S., Yi, S.A., Khudik, V. & Shvets, G. (2009). Electron self-injection and trapping into an evolving plasma bubble. Phys. Rev. Lett. 103, 135004.CrossRefGoogle ScholarPubMed
Karmakar, A. & Pukkov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kostyukov, I., Pukhov, A. & Kiselev, S. (2004). Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas 11, 5256.CrossRefGoogle Scholar
Kumar, A., Dahiya, D. & Sharma, A.K. (2011). Laser prepulse induced plasma channel formation in air and relativistic self focusing of an intense short pulse. Phys. Plasmas 18, 023102.CrossRefGoogle Scholar
Kumar, K.K. Magesh & Tripathi, V.K. (2012). Laser wakefield bubble regime acceleration of electrons in a preformed non uniform plasma channel. Laser Part. Beams 30, 575582.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, C., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimeter-scale accelerator. Nat. Phys. 2, 696.CrossRefGoogle Scholar
Liu, Y., Sheng, Z.M., Zheng, J., Li, F.Y., Xu, X.L., Lu, W., Mori, W.B., Liu, C.S. & Zhang, J. (2012). Ultrafast XUV emission from laser wakefields in underdense plasma. New J. Phys. 14, 083031.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M., Mori, W.B. & Katsouleas, T. (2006). Non linear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002.CrossRefGoogle Scholar
Ma, Y.Y., Sheng, Z.M., Li, Y.T., Chang, W.W. & Yuan, X.H. (2006). Dense quasi-monoenergetic attosecond electron bunches from laser interaction with wire and slice targets. Phys. Plasmas 13, 110702.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, Z.N.C.D., Thomas, J.L.C.A.G.R., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature (London) 431, 535.CrossRefGoogle ScholarPubMed
Martins, S.F., Fonseca, R.A., Lu, W., Mori, W.B. & Silva, L.O. (2010). Exploring laser-wakefield accelerator regimes for near term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nat. Phys. 6, 311.CrossRefGoogle Scholar
Mirzanejhad, S., Sohbatzadeh, F., Asri, M. & Ghanbari, K. (2010). Quasi monoenergetic GeV electron bunch generation by the Wakefield of the chirped laser pulse. Phys. Plasmas 17, 033103.CrossRefGoogle Scholar
Miura, E., Koyama, K., Kato, S., Saito, N., Adachi, M., Kawada, Y., Nakamura, T. & Tanimoto, M. (2005). Demonstration of quasi-monoenergetic electron beam generation in laser driven plasma acceleration. Appl. Phys. Lett. 86, 251501.CrossRefGoogle Scholar
Murakami, M. & Tanaka, M. (2013). Generation of high quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator. Appl. Phys. Lett. 102, 163101.CrossRefGoogle Scholar
Rao, B.S., Chakera, J.A., Naik, P.A., Kumar, M. & Gupta, P.D. (2011). Laser wakefield acceleration in pre-formed plasma channel created by pre-pulse pedestal of terawatt laser pulse. Phys. Plasmas 18, 093104.Google Scholar
Shen, B., Li, Y., Nemeth, K., Shang, H. & Chae, Y.C. (2007). Electron injection by a nanowire in the bubble regime. Phys. Plasmas 14, 053115.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Uhm, H.S., Nam, I.H., Kur, M.S. & Suk, H. (2013). Large transverse motion and micro-bunching of trapped electrons in a wakefield accelerator driven by temporally-asymmetric laser pulses. Current Appl. Phys. 13, 645651.CrossRefGoogle Scholar
Umstadter, D., Kim, J.K. & Dodd, E. (1996). Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073.CrossRefGoogle ScholarPubMed
Upadhyay, A.K., Samant, S.A. & Krishnagopal, S. (2013). Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration. Phys. Plasmas 20, 013106.CrossRefGoogle Scholar
Vieira, J., Martins, S.F., Pathak, V.B., Fonseca, R.A., Mori, W.B. & Silwa, L.O. (2011). Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett. 106, 225001.CrossRefGoogle ScholarPubMed
Vieira, J., Martins, J.L., Pathak, V.B., Fonseca, R.A., Mori, W.B. & Silva, L.O. (2012). Magnetically assisted self-injection and radiation generation for plasma based acceleration. Plasma Phys. Contr. Fusion 54, 124044.CrossRefGoogle Scholar
Wang, W.M., Sheng, Z.M. & Zhang, J. (2008). Controlled electron injection into laser wakefields with a perpendicular injection laser pulse. Appl. Phys. Lett. 93, 201502.CrossRefGoogle Scholar
Xu, J., Shen, B., Zhang, X., Wen, M., Ji, L., Wang, W., Yu, Y. & Nakajima, K. (2010). Generation of a large amount of energetic electrons in complex structure bubble. N. J. of Physics 12, 023037.CrossRefGoogle Scholar
Yi, S.A., Khudik, V., Siemon, C. & Shvets, G. (2013). Analytical model of electromagnetic fields around a plasma bubble in the blow out regime. Phys. Plasmas 20, 013108.CrossRefGoogle Scholar
Zhang, L., Chen, L.M., Wang, W.M., Yan, W.C., Yuan, D.W., Mao, J.Y.,Wang, Z., Liu, C., Shen, Z.W., Faenov, A., Pikuz, T., Li, D.Z., Li, Y.T., Dong, Q.L., Lu, X., Ma, J.L., Wei, Z.Y., Sheng, Z.M. & Zhang, J. (2012). Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phy. Lett. 100, 014104.CrossRefGoogle Scholar