Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:21:13.698Z Has data issue: false hasContentIssue false

Laser accelerated ions and electron transport in ultra-intense laser matter interaction

Published online by Cambridge University Press:  02 June 2005

M. ROTH
Affiliation:
University of Technology, Darmstadt, Germany
E. BRAMBRINK
Affiliation:
University of Technology, Darmstadt, Germany
P. AUDEBERT
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intense, Paris, France
A. BLAZEVIC
Affiliation:
University of Technology, Darmstadt, Germany
R. CLARKE
Affiliation:
Rutherford Appleton Laboratory, London, United Kingdom
J. COBBLE
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM
T.E. COWAN
Affiliation:
University of Nevada, Reno, NV
J. FERNANDEZ
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM
J. FUCHS
Affiliation:
Laboratoire pour l'Utilisation des Lasers Intense, Paris, France University of Nevada, Reno, NV
M. GEISSEL
Affiliation:
University of Technology, Darmstadt, Germany Sandia National Laboratory, Albuquerque, NM
D. HABS
Affiliation:
Ludwigs Maximilian Universität, München, Germany
M. HEGELICH
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM
S. KARSCH
Affiliation:
Rutherford Appleton Laboratory, London, United Kingdom
K. LEDINGHAM
Affiliation:
University of Strathclyde, Glascow, United Kingdom
D. NEELY
Affiliation:
Rutherford Appleton Laboratory, London, United Kingdom
H. RUHL
Affiliation:
University of Nevada, Reno, NV
T. SCHLEGEL
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
J. SCHREIBER
Affiliation:
Ludwigs Maximilian Universität, München, Germany

Abstract

Since their discovery, laser accelerated ion beams have been the subject of great interest. The ion beam peak power and beam emittance is unmatched by any conventionally accelerated ion beam. Due to the unique quality, a wealth of applications has been proposed, and the first experiments confirmed their prospects. Laser ion acceleration is strongly linked to the generation and transport of hot electrons by the interaction of ultra-intense laser light with matter. Comparing ion acceleration experiments at laser systems with different beam parameters and using targets of varying thickness, material and temperature, some insight on the underlying physics can be obtained. The paper will present experimental results obtained at different laser systems, first beam quality measurement on laser accelerated heavy ions, and ion beam source size measurements at different laser parameters. Using structured targets, we compare information obtained from micro patterned ion beams about the accelerating electron sheath, and the influence of magnetic fields on the electron transport inside conducting targets.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, A.R., Davies, J.R., Guerin, S. & Ruhl, H. (1997). Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys. Cont. Fus. 39, 653.CrossRefGoogle Scholar
Boody, F.P., Hoepfl, R., Hora, H. & Kelly, J.C. (1996). Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 14, 443448.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., MacKinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.Google Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interaction with solids. Phys. Rev. Lett. 85, 16541657.CrossRefGoogle Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H. & Renard-LeGalloudec, N. (2004). Ultralow emittance, multi-mev proton bemas from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuel. Laser Part. Beams 22, 115120.Google Scholar
Fuchs, J., Cowan, T.E., Audebert, P., Ruhl, H., Gremillet, L., Kemp, A., Allen, M., Blazevic, A., Gauthier, J.-C., Geissel, M., Hegelich, M., Karsch, S., Parks, P., Roth, M., Sentoku, Y., Stephens, R. & Campbell, E.M. (2003). Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. Phys. Rev. Lett. 91, 255002.CrossRefGoogle Scholar
Haseroth, H. & Hill, C.E. (1996). Multicharged ion sources for pulsed accelerators. Rev. Sci. Instr. 67, 945949.CrossRefGoogle Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.-C., Geissel, M., Audebert, P., Cowan, T.E. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Varentsov, D., Udrea, S., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Honrubia, J.J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 129135.Google Scholar
Key, M.H., Cable, M.D., Cowan, T.E., Estabrook, K.G., Hammel, B.A., Hatchett, S.P., Henry, E.A., Hinkel, D.E., Kilkenny, J.D., Koch, J.A., Kruer, W.L., Langdon, A.B., Lasinski, B.F., Lee, R.W., MacGowan, B.J., MacKinnon, A., Moody, J.D., Moran, M.J., Offenberger, A.A., Pennington, D.M., Perry, M.D., Phillips, T.J., Sangster, T.C., Singh, M.S., Stoyer, M.A., Tabak, M., Thietbohl, G.L., Tsukamoto, M., Wharton, K. & Wilks, S.C. (1998). Hot electron production and heating by hot electrons in fast ignitor research. Phys. Plasmas 5, 19661972.CrossRefGoogle Scholar
Martinolli, E., Batani, D., Perelli-Cippo, E., Scianitti, F., Koenig, M., Santos, J.J, Amiranoff, F., Baton, S.D., Hall, T., Key, M., MacKinnon, A., Snavely, R., Freeman, R., Andersen, C., King, J., Stephens, R., Rabec-Le-Gloahec, M.R., Rousseaux, C. & Cowan, T.E. (2002). Fast electron transport and heating in solid density matter. Laser Part. Beams 20, 171175.Google Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 64, 917924.CrossRefGoogle Scholar
Pisani, F., Bernadinello, A., Batani, D., Antonicci, A., Martinolli, E., Koenig, M., Gremillet, L., Amiranoff, F., Baton, S., Davies, J., Hall, T., Scott, D., Norreys, P., Djaoui, A., Rousseaux, C., Fews, P., Bandulet, H. & Pepin, H. (2000). Experimental evidence of electric inhibition in fast electron transport and of electric-field-limited fast electron transport in dense matter. Phys. Rev. E 62, R5927R5930.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Audebert, P., Fuchs, J., Gauthier, J.-C., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. ST-AB. 5, 061301.CrossRefGoogle Scholar
Ruhl, H., Cowan, T.E. & Fuchs, J. (2004). The generation of micro-fiducials in laser-accelerated proton flows, their imaging property of surface structures and application for the characterization of the flow. Phys. Plasmas 11, L17.Google Scholar
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., McCanny, T., Spencer, I., Machacek, A.C., Allott, R., Clarke, R.J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 1921.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, M.E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Wharton, K.B., Hatchett, S.P., Wilks, S.C., Key, M.H., Moody, J.D., Yanovsky, V., Offenberger, A.A., Hammel, B.A., Perry, M.D. & Joshi, C. (1998). Experimental measurements of hot electrons generated by ultraintense (>1019 W/cm2) laser-plasma interactions an solid-density targets. Phys. Rev. Lett. 81, 822825.CrossRefGoogle Scholar