Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T14:05:31.960Z Has data issue: false hasContentIssue false

Irradiation asymmetry effects on the direct drive targets compression for the megajoule laser facility

Published online by Cambridge University Press:  24 July 2015

N.N. Demchenko
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
I.YA. Doskoch
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
S.YU. Gus'kov
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
P.A. Kuchugov*
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
V.B. Rozanov
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
R.V. Stepanov
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
G.A. Vergunova
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
R.A. Yakhin
Affiliation:
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
N.V. Zmitrenko
Affiliation:
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
*
Address correspondence and reprint requests to: Pavel A. Kuchugov, Russian Federation, Miusskaya Sq. 4, 125047 Moscow, Russia. E-mail: [email protected].

Abstract

In the previous works (Rozanov et al., 2013; 2015) we have performed one-dimensional (1D) numerical simulations of the target compression and burning at the absorbed energy of ~1.5 MJ. As a result, the target was chosen to have a low initial aspect ratio in order to be less sensitive to the influence of such parameters as laser pulse duration, total laser energy, and equations of state model. The simulation results demonstrated a higher probability of ignition and effective burning of such a system. In the present work we discuss the impact of irradiation asymmetry on this baseline target implosion. The details of the 1D compression and a possible influence of 2D and 3D effects due to the hydrodynamic instability and mixing have been described. In accordance with the 2D calculations the target is still ignited, however, the symmetry analysis of 3D ones gives reasons to further reduce the efficiency of conversion of kinetic energy into potential energy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanas'ev, Yu.V., Gamalii, E.G., Demchenko, N.N. & Rozanov, V.B. (1982). The absorption of the laser radiation by the spherical target, taking into account refraction and hydrodynamics. M.:Nauka, Trudy Fizicheskogo Instituta im. P.N. Lebedeva 134, 3241.Google Scholar
Basov, N.G., Volosevich, P.P., Gamalii, E.G., Zakharenkov, Yu.A., Kiselev, A.E., Kurdyumov, S.P., Levanov, E.I., Rozanov, V.B., Rupasov, A.A., Samarskii, A.A., Sklizkov, G.V., Sotskii, E.N. & Shikanov, A.S. (1988). The Thermal Conductivity of the Laser Crown Created by Laser. Preprint No. 188. Moscow, Russia: Lebedev Physical Institute.Google Scholar
Besnard, D. (2008). Fusion with the Megajoule laser. J. Phys. Conf. Ser. 112, 012004.CrossRefGoogle Scholar
Boehly, T.R., Brown, D.L., Craxton, R.S., Keck, R.L., Knauer, J.P., Kelly, J.H., Kessler, T.J., Kumpan, S.A., Bucks, S.J., Letzring, S.A., Marshall, F.J., McCrory, R.L., Morse, S.F.B., Seka, W., Sowes, J.M. & Verdon, C.P. (1997). Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495506.CrossRefGoogle Scholar
Brandon, V., Canaud, B., Primout, M., Laffite, S. & Temporal, M. (2013). Marginally igniting direct-drive target designs for the laser megajoule. Laser Part. Beams 31, 141148.CrossRefGoogle Scholar
Brandon, V., Canaud, B., Temporal, M. & Ramis, R. (2014). Low initial aspect-ratio direct-drive target designs for shock- and self-ignition in the context of the laser Megajoule. Nucl. Fusion 54, 083016.CrossRefGoogle Scholar
Clark, D.S., Hinkel, D.E., Eder, D.C., Jones, O.S., Haan, S.W., Hammel, B.A., Marinak, M.M., Milovich, J.L., Robey, H.F., Suter, L.J. & Town, R.P.J. (2013). Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility. Phys. Plasmas 20, 056318.CrossRefGoogle Scholar
Dolan, T.J. (1981). Fusion Research. Principles, Experiments and Technology. New York: Pergamon Press.Google Scholar
Dolgoleva, G.V. (2013). Numerical Solvation of Equations, Describing the Transfer of Heat by Electrons and Ions. Preprint No. 71. Moscoe, Russia: Keldysh Institute of Applied Mathematics.Google Scholar
Dolgoleva, G.V. & Zabrodina, E.A. (2014). Comparison of Two Models of Calculation of Thermonuclear Kinetics. Preprint No. 68. Moscow, Russia: Keldysh Institute of Applied Mathematics.Google Scholar
Ebrardt, J. & Chaput, J.M. (2008). LMJ Project status. J. Phys. Conf. Ser. 112, 032005.CrossRefGoogle Scholar
Edwards, M.J., Lindl, J.D., Spears, B.K., Weber, S.V., Atherton, L.J., Bleuel, D.L., Bradley, D.K., Callahan, D.A., Cerjan, C.J., Clark, D., Collins, G.W., Fair, J.E., Fortner, R.J., Glenzer, S.H., Haan, S.W., Hammel, B.A., Hamza, A.V., Hatchett, S.P., Izumi, N., Jacoby, B., Jones, O.S., Koch, J.A., Kozioziemski, B.J., Landen, O.L., Lerche, R., MacGowan, B.J., MacKinnon, A.J., Mapoles, E.R., Marinak, M.M., Moran, M., Moses, E.I., Munro, D.H., Schneider, D.H., Sepke, S.M., Shaughnessy, D.A., Springer, P.T., Tommasini, R., Bernstein, L., Stoeffl, W., Betti, R., Boehly, T.R., Sangster, T.C., Glebov, V.Yu., McKenty, P.W., Regan, S.P., Edgell, D.H., Knauer, J.P., Stoeckl, C., Harding, D.R., Batha, S., Grim, G., Herrmann, H.W., Kyrala, G., Wilke, M., Wilson, D.C., Frenje, J., Petrasso, R., Moreno, K., Huang, H., Chen, K.C., Giraldez, E., Kilkenny, J.D., Mauldin, M., Hein, N., Hoppe, M., Nikroo, A. & Leeper, R.J. (2011). The experimental plan for cryogenic layered target implosions on the National Ignition Facility – The inertial confinement approach to fusion. Phys. Plasmas 18, 051003.CrossRefGoogle Scholar
Edwards, M.J., Patel, P.K., Lindl, J.D., Atherton, L.J., Glenzer, S.H., Haan, S.W., Kilkenny, J.D., Landen, O.L., Moses, E.I., Nikroo, A., Petrasso, R., Sangster, T.C., Springer, P.T., Batha, S., Benedetti, R., Bernstein, L., Betti, R., Bleuel, D.L., Boehly, T.R., Bradley, D.K., Caggiano, J.A., Callahan, D.A., Celliers, P.M., Cerjan, C.J., Chen, K.C., Clark, D.S., Collins, G.W., Dewald, E.L., Divol, L., Dixit, S., Doeppner, T., Edgell, D.H., Fair, J.E., Farrell, M., Fortner, R.J., Frenje, J., Gatu Johnson, M.G., Giraldez, E., Glebov, V.Yu., Grim, G., Hammel, B.A., Hamza, A.V., Harding, D.R., Hatchett, S.P., Hein, N., Herrmann, H.W., Hicks, D., Hinkel, D.E., Hoppe, M., Hsing, W.W., Izumi, N., Jacoby, B., Jones, O.S., Kalantar, D., Kauffman, R., Kline, J.L., Knauer, J.P., Koch, J.A., Kozioziemski, B.J., Kyrala, G., LaFortune, K.N., Le Pape, S., Leeper, R.J., Lerche, R., Ma, T., MacGowan, B.J., MacKinnon, A.J., Macphee, A., Mapoles, E.R., Marinak, M.M., Mauldin, M., McKenty, P.W., Meezan, M., Michel, P.A., Milovich, J., Moody, J.D., Moran, M., Munro, D.H., Olson, C.L., Opachich, K., Pak, A.E., Parham, T., Park, H.-S., Ralph, J.E., Regan, S.P., Remington, B., Rinderknecht, H., Robey, H.F., Rosen, M., Ross, S., Salmonson, J.D., Sater, J., Schneider, D.H., Seguin, F.H., Sepke, S.M., Shaughnessy, D.A., Smalyuk, V.A., Spears, B.K., Stoeckl, C., Stoeffl, W., Suter, L., Thomas, C.A., Tommasini, R., Town, R.P., Weber, S.V., Wegner, P.J., Widman, K., Wilke, M., Wilson, D.C., Yeamans, C.B. & Zylstra, A. (2013). Progress towards ignition on the National Ignition Facility. Phys. Plasmas 20, 07050.CrossRefGoogle Scholar
Garanin, S.G., Bel'kov, S.A. & Bondarenko, S.V. (2012). Concept of construction a laser system UFL-2M. Book of Abstracts of Zvenigorod Int. Conf. on Plasma Physics and Controlled Fusion, 6–10 February, Zvenigorod, Russia, p. 17.Google Scholar
Gus'kov, S.Yu., Demchenko, N.N., Zhidkov, N.V., Zmitrenko, N.V., Litvin, D.N., Rozanov, V.B., Stepanov, R.V., Suslov, N.A. & Yakhin, R.A. (2010). Analysis of direct-drive capsule compression experiments on the Iskra-5 laser facility. J. Exp. Theor. Phys. 111, 466483.CrossRefGoogle Scholar
Kalitkin, N.N. (1978). Numerical Methods. Moscow: Nauka, p. 512.Google Scholar
Kozlov, B.N. (1962). The rates of thermonuclear reactions. Atomnaya Energiya 12, 238.Google Scholar
Kuchugov, P., Zmitrenko, N., Rozanov, V., Yanilkin, Yu., Sin'kova, O., Statsenko, V. & Chernyshova, O. (2012). The evolution model of the Rayleigh-Taylor instability deveopmnent. J. Rus. Las. Res. 33, 517530.CrossRefGoogle Scholar
Kuchugov, P.A. (2014). Dynamics of turbulent mixing processes in laser targets. PhD Thesis. Moscow, Russia: Keldysh Institute of Applied Mathematics.Google Scholar
Kuchugov, P.A., Shuvalov, N.D. & Kazenov, A.M. (2014). Simulation of the Gravitational Mixing on GPU. Bull. Peoples’ Friendship University of Russia, series Math., Inform., Phys. 2, 225229.Google Scholar
Landen, O.L. (2014). NIF laser-matter experiments: Status and prospects. Book of Abstracts of the 33rd European Conf. on Laser Interaction with Matter, 31 August–5 September 2014, Paris, France, p. 29.Google Scholar
Lebo, I.G. & Tishkin, V.F. (2006). The Study of Hydrodynamic Instability in Problems of Laser Fusion by Methods of Mathematical Modeling. Moscow: FIZMATLIT, p. 304.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Miller, G.H., Moses, E.I. & Wuest, C.R. (2004). The National Ignition Facility. Opt. Eng. 43, 28412853.CrossRefGoogle Scholar
Miquel, J.L. (2014). The laser Megajoule facility: Current status and program overview. Book of Abstracts of the 33rd European Conf. on Laser Interaction with Matter, August 31–September 5 2014, Paris, France, p. 25.Google Scholar
Moses, E.I., Boyd, R.N., Remington, B.A., Keane, C.J. & Al-Ayat, R. (2009). The National Ignition Facility: Ushering in a new age for high energy density science. Phys. Plasmas 16, 041006.CrossRefGoogle Scholar
Rozanov, V.B., Gus'kov, S.Yu., Vergunova, G.A., Demchenko, N.N., Stepanov, R.V., Doskoch, I.Ya., Yakhin, R.A., Bel'kov, S.A., Bondarenko, S.V. & Zmitrenko, N.V. (2013). Direct Drive Targets for the Megajoule Installation UFL-2M. Book of Abstracts of the Int. Conf. of Inertial Fusion and Application Science, 8–13 September 2013, Nara, Japan, p. 236.Google Scholar
Rozanov, V.B., Gus'kov, S.Yu., Vergunova, G.A., Demchenko, N.N., Stepanov, R.V., Doskoch, I.Ya., Yakhin, R.A. & Zmitrenko, N.V. (2015). Direct Drive targets for the megajoule facility UFL-2M. J. Phys. Conf. Ser. 651, 012017.Google Scholar
Rozanov, V.B., Zmitrenko, N.V., Kuchugov, P.A., Stepanov, R.V., Statsenko, V.P., Yanilkin, Yu.V. & Yakhin, R.A. (2014). Hydrodynamic instabilities and mixing in the direct-drive laser targets for the megajoule scale facilities. Book od Abstracts of the 33rd European Conf. on Laser Interaction with Matter, 31 August–5 September 2014, p. 101.Google Scholar
Taylor, S. & Chittenden, J.P. (2014). Effects of perturbations and radial profiles on ignition of inertial confinement fusion hotspots. Phys. Plasmas 21, 062701.CrossRefGoogle Scholar
Tishkin, V.F., Nikishin, V.V., Popov, I.V. & Favorskii, A.P. (1995). Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability. Matem. Mod. 7, 1525.Google Scholar
Volosevich, P.P., Gus'kov, S.Yu., Levanov, E.I., Rozanov, V.B. & Sirotenko, N.G. (1995). Mathematical Modeling of Laser Compression and Burning of Two-stage Thermonuclear Targets. Preprint No. 18. Moscow, Russia: Institute of Mathematical Modelling.Google Scholar
Volosevich, P.P., Kosyrev, V.I. & Levanov, E.I. (1978). On Account of the Restriction of Heat Flux in the Numerical Experiment. Preprint No. 21. Moscow, Russia: Institute of Applied Mathematics.Google Scholar
Zmitrenko, N.V., Karpov, V.Ya., Fadeev, A.P., Shelaputin, I.I. & Shpatakovskaya, G.V. (1983). Description of the physical processes in the DIANA program for calculations of problems of laser fusion. Voprosy Atomnoy Nauki i Tekhniki (VANT) Series Methods and Software for Numerical Solution of Problems of Mathematical Physics 2, 3437.Google Scholar