Published online by Cambridge University Press: 17 June 2010
In this paper, the ion jet generation from the interaction of an ultraintense laser pulse and a rear-side concave target is investigated analytically using a simple fluid model. We find that the ion expanding surface at the rear-side is distorted due to a strong charge-separation field, and that this distortion becomes dramatic with a singular cusp shown on the central axis at a critical time. The variation of the transverse ion velocity and the relative ion density diverge on the cusp, signaling the emergence of an on-axis ion jet. We have obtained analytical expressions for the critical time and the maximum velocity of the ion jet, and suggested an optimum shape for generating a collimated energetic ion jet. The above theoretical analysis has been verified by particle-in-cell (PIC) numerical simulations.