Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T21:13:59.702Z Has data issue: false hasContentIssue false

Investigation of ionization speed in field ionization with laser–plasma interaction

Published online by Cambridge University Press:  13 July 2016

Y. Tian
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
X. Jin*
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
W. Yan
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
X. Gu
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
J. Yu
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China Imperial College London, London, UK
J. Li
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
B. Li
Affiliation:
University of Electronic Science and Technology of China, Chengdu, China
*
Address correspondence and reprint requests to: X. Jin, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China. E-mail: [email protected]

Abstract

The effects of target density and laser intensity on ionization speed are studied in this paper by 1D3V particle-in-cell simulations, where the field ionization of single atom is involved basing Ammosov-Delone-Krainov model in the form of Penetrante and Bardsley. To consider the ionization speed, the evolution of plasma density for the helium target, particularly, the ion density change rate near the target front surface, are discussed. The results show that not only the laser intensity, but also the target density will affect field ionization and further affect the plasma formation. This work will be helpful for further understanding of plasma formation in intense laser pulse. Also, it may be benefit for the setup of initial parameters before the simulation of laser–plasma interaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammosov, M.V., Delone, N.B. & Krainov, V. (1986). Tunnel ionization of complex atoms and atomic ions in an alternating electromagnetic field. Sov. Phys. JExp. Theor. Phys. 64, 11911194.Google Scholar
Cohen, B.I., Kemp, A.J. & Divol, L. (2010). Simulation of laser–plasma interactions and fast-electron transport in inhomogeneous plasma. J. Comput. Phys. 229, 45914612.CrossRefGoogle Scholar
Daido, H. (2012). Review of laser-driven ion sources. Rep. Prog. Phys. 75, 056401.CrossRefGoogle ScholarPubMed
d'Humières, E., Brantov, A., Bychenkov, V.Yu. & Tikhonchuk, V.T. (2013). Optimization of laser-target interaction for proton acceleration. Phys. Plasmas 20, 023103.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.CrossRefGoogle Scholar
Fox, T.E., Robinson, A.P.L. & Pasley, J. (2013). Strong shock generation by fast electron energy deposition. Phys. Plasmas 20, 122707.CrossRefGoogle Scholar
Jinqing, Y., Weimin, Z., Lihua, C., Zongqing, Z., Leifeng, C., Lianqiang, S., Dongxiao, L., Xiaolin, J., Bin, L. & Yuqiu, G. (2012). Enhancement in coupling efficiency from laser to forward hot electrons by conical nanolayered targets. Appl. Phys. Lett. 100, 204101.Google Scholar
Kemp, A.J., Pfund, R.E.W. & Meyer-ter-Vehn, J.r. (2004). Modeling ultrafast laser-driven ionization dynamics with Monte Carlo collisional particle-in-cell simulations. Phys. Plasmas 11, 5648.CrossRefGoogle Scholar
Lefebvre, E., Gremillet, L., Lévy, A., Nuter, R., Antici, P., Carrié, M., Ceccotti, T., Drouin, M., Fuchs, J., Malka, V. & Neely, D. (2010). Proton acceleration by moderately relativistic laser pulses interacting with solid density targets. New J. Phys. 12, 045017.CrossRefGoogle Scholar
Lichtenberg, M.A.L.A.J. (2005). Principles of Plasma Discharges and Materials Processing. New York: John Wiley & Sons.Google Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.CrossRefGoogle Scholar
McGuffey, C., Thomas, A.G.R., Schumaker, W., Matsuoka, T., Chvykov, V., Dollar, F.J., Kalintchenko, G., Yanovsky, V., Maksimchuk, A., Krushelnick, K., Glazyrin, I.V. & Karpeev, A.V. (2010). Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004.CrossRefGoogle Scholar
Petrov, G.M., Davis, J. & Petrova, T. (2009). Ionization dynamics of high-intensity laser–target interactions. Plasma Phys. Control. Fusion 51, 095005.CrossRefGoogle Scholar
Posthumus, J.H., Frasinski, L.J.F., Giles, A.J. & Codling, K. (1995). Dissociative ionization of molecules in intense laser fields: A method of predicting ion kinetic energies and appearance intensities. Phys. B. At. Mol. Opt. Phys. 28, L349L353.CrossRefGoogle Scholar
Psikal, J., Klimo, O. & Limpouch, J. (2011). Field ionization effects on ion acceleration in laser-irradiated clusters. Nucl. Instrum. Meth. A 653, 109112.CrossRefGoogle Scholar
Psikal, J., Klimo, O. & Limpouch, J. (2012). 2D particle-in-cell simulations of ion acceleration in laser irradiated submicron clusters including field ionization. Phys. Plasmas 19, 043107.CrossRefGoogle Scholar
Robinson, A.P.L., Strozzi, D.J., Davies, J.R., Gremillet, L., Honrubia, J.J., Johzaki, T., Kingham, R.J., Sherlock, M. & Solodov, A.A. (2014). Theory of fast electron transport for fast ignition. Nucl. Fusion 54, 054003.CrossRefGoogle Scholar
Sakagami, H., Okada, K., Kaseda, Y., Taguchi, T. & Johzaki, T. (2012). Collisional effects on fast electron generation and transport in fast ignition. Laser Part. Beams 30, 243248.CrossRefGoogle Scholar
Xiaolin, J., Tao, H., Wenlong, C., Jianqing, L., Hualiang, L., Bin, L. & Zhonghai, Y. (2015). BUMBLEBEE: A 1D3V relativistic PIC/MCC software for laser-plasma interaction. Proc. IEEE ICOPS, Belek, Turkey.Google Scholar
Supplementary material: File

Tian supplementary material

Figures S1-S3

Download Tian supplementary material(File)
File 652 KB