Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T00:20:46.507Z Has data issue: false hasContentIssue false

Investigation of ion characteristics in CO2 laser irradiating preformed tin-droplet plasma

Published online by Cambridge University Press:  12 August 2016

Z. Chen
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
X. Wang*
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
D. Zuo
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
J. Wang
Affiliation:
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
*
Address correspondence and reprint requests to: X. Wang, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. E-mail: [email protected]

Abstract

Comparative study of CO2 laser-produced tin-droplet plasma with and without pre-pulse laser has been presented. A pre-pulse laser and the CO2 laser was combined and focused to tin-droplet with a diameter of 180 µm. The emitted Sn ions were detected by several Faraday cups to obtain angular distribution of ions in the laser-produced tin-droplet plasma. The influence of pre-pulse laser energy and delay time between pumping laser and pre-pulse laser on the ion characteristics was investigated. It is illustrated that ion average kinetic energy from CO2 laser-produced plasma (LPP) can be reduced when the tin-droplet target has been replaced by the preformed Sn plasma. The obtained optimal delay time with the lowest ion average kinetic energy is about hundreds of nanoseconds. The ion time-of-flight spectra show a twin peak structure in laser-irradiating preformed Sn plasma. And a superimposed Maxwell–Boltzmann (MB) distribution is proposed to describe this twin peak ion time-of-flight spectra. The fitting results quite agree with the raw ion time-of-flight spectra in current experiment. Then, the fitted plasma temperatures and mass-center velocities with various delay times in laser-irradiating preformed plasma are obtained, and the fitted plasma temperatures can be comparable with ion average kinetic energy in double-pulse LPP, which justified the rationality using this superimposed MB distribution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banine, V.Y., Koshelev, K. & Swinkels, G. (2011). Physical processes in EUV sources for microlithography. J. Phys. D: Appl. Phys. 44, 253001.Google Scholar
Bulgakova, N.M., Bulgakov, A.V. & Bobrenok, O.F. (2000). Double layer effects in laser-ablation plasma plumes. Phys. Rev. E 62, 5624.Google Scholar
Burdt, R.A., Tao, Y., Tillack, M.S., Yuspeh, S., Shaikh, N.M., Flaxer, E. & Najmabadi, F. (2010). Laser wavelength effects on the charge state resolved ion energy distributions from laser-produced Sn plasma. J. Appl. Phys. 107, 043303.Google Scholar
Chen, H., Wang, X., Duan, L., Lan, H., Chen, Z., Zuo, D. & Lu, P. (2015). Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma. J. Appl. Phys. 117, 193302.CrossRefGoogle Scholar
Eliezer, S., Nissim, N., Martínez Val, J.M., Mima, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.Google Scholar
Freeman, J., Harilal, S. & Hassanein, A. (2011). Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications. J. Appl. Phys. 110, 083303.Google Scholar
Fujioka, S., Shimomura, M., Shimada, Y., Maeda, S., Sakaguchi, H., Nakai, Y., Aota, T., Nishimura, H., Ozaki, N. & Sunahara, A. (2008). Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production. Appl. Phys. Lett. 92, 241502.Google Scholar
Gambino, N., Brandstätter, M., Rollinger, B. & Abhari, R. (2014). A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas. Rev. Sci. Instrum. 85, 093302.Google Scholar
George, S.A., Silfvast, W.T., Takenoshita, K., Bernath, R.T., Koay, C-S., Shimkaveg, G. & Richardson, M.C. (2007). Comparative extreme ultraviolet emission measurements for lithium and tin laser plasmas. Opt. Lett. 32, 997.CrossRefGoogle ScholarPubMed
Giovannini, A.Z., Gambino, N., Rollinger, B. & Abhari, R.S. (2015). Angular ion species distribution in droplet-based laser-produced plasmas. J. Appl. Phys. 117, 033302.CrossRefGoogle Scholar
Grismayer, T. & Mora, P. (2006). Influence of a finite initial ion density gradient on plasma expansion into a vacuum. Phys. Plasmas 13, 032103.Google Scholar
Harilal, S., O'Shay, B., Tao, Y. & Tillack, M.S. (2006). Ambient gas effects on the dynamics of laser-produced tin plume expansion. J. Appl. Phys. 99, 083303.Google Scholar
Hassanein, A. (2011). Combined effects of prepulsing and target geometry on efficient extreme ultraviolet production from laser produced plasma experiments and modeling. J. Micro/Nanolithogr., MEMS and MOEMS 10, 033002.Google Scholar
Hess, P. (1989). Photoacoustic, photothermal and photochemical processes at surfaces and in thin films. In Photoacoustic, Photothermal and Photochemical Processes at Surfaces and in Thin Films (Hess, P., Ed.), pp. 67. Berlin, Heidelberg: Springer.Google Scholar
Higashiguchi, T., Hamada, M. & Kubodera, S. (2007). Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source. Rev. Sci. Instrum. 78, 036106.Google Scholar
Kools, J., Baller, T., De Zwart, S. & Dieleman, J. (1992). Gas flow dynamics in laser ablation deposition. J. Appl. Phys. 71, 45474556.Google Scholar
Mizoguchi, H., Nakarai, H., Abe, T., Nowak, K.M., Kawasuji, Y., Tanaka, H., Watanabe, Y., Hori, T., Kodama, T., Shiraishi, Y., Yanagida, T., Soumagne, G., Yamada, T., Yamazaki, T., Okazaki, S. & Saitou, T. (2015). Performance of one hundred watt HVM LPP-EUV source. Proc. SPIE, 9422, 94220C.Google Scholar
Morozov, A.A. (2015). Analytical formula for interpretation of time-of-flight distributions for neutral particles under pulsed laser evaporation in vacuum. J. Phys. D: Appl. Phys. 48, 195501.Google Scholar
Murakami, M., Kang, Y.G., Nishihara, K., Fujioka, S. & Nishimura, H. (2005). Ion energy spectrum of expanding laser-plasma with limited mass. Phys. Plasmas 12, 062706.CrossRefGoogle Scholar
Okazaki, K., Nakamura, D., Akiyama, T., Toya, K., Takahashi, A. & Okada, T. (2009). Dynamics of debris from laser-irradiated Sn droplet for EUV lithography light source. SPIE LASE: Lasers Appl. Sci. Eng. 7201, 72010T.Google Scholar
Pisarczyk, T., Gus'kov, S.Y., Renner, O., Demchenko, N.N., Kalinowska, Z., Chodukowski, T., Rosinski, M., Parys, P., Smid, M., Dostal, J., Badziak, J., Batani, D., Volpe, L., Krousky, E., Dudzak, R., Ullschmied, J., Turcicova, H., Hrebicek, J., Medrik, T., Pfeifer, M., Skala, J., Zaras-Szydlowska, A., Antonelli, L., Maheut, Y., Borodziuk, S., Kasperczuk, A. & Pisarczyk, P. (2015). Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition. Laser Part. Beams 33, 221236.Google Scholar
Richardson, M., Koay, C.-S., Takenoshita, K., Keyser, C. & Al-Rabban, M. (2004). High conversion efficiency mass-limited Sn-based laser plasma source for extreme ultraviolet lithography. J. Vacuum Sci. Technol. B 22, 785790.CrossRefGoogle Scholar
Rollinger, B., Morris, O., Chokani, N. & Abhari, R.S. (2010). Tin ion and neutral dynamics within an LPP EUV source. Proc. SPIE, 7636, 76363F.Google Scholar
Roy, A., Harilal, S.S., Hassan, S.M., Endo, A., Mocek, T. & Hassanein, A. (2015). Collimation of laser-produced plasmas using axial magnetic field. Laser Part. Beams 33, 175182.Google Scholar
Roy, A., Murtaza Hassan, S., Harilal, S.S., Endo, A., Mocek, T. & Hassanein, A. (2014). Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field. Phys. Plasmas 21, 053106.Google Scholar
Salik, M., Hanif, M., Wang, J. & Zhang, X.Q. (2014). Spectroscopic characterization of laser-ablated manganese sulfate plasma. Laser Part. Beams 32, 137144.CrossRefGoogle Scholar
Takahashi, A., Nakamura, D., Tamaru, K., Akiyama, T. & Okada, T. (2008). Emission characteristics of debris from CO2 and Nd: YAG laser-produced tin plasmas for extreme ultraviolet lithography light source. Appl. Phys. B 92, 7377.Google Scholar
Tao, Y. & Tillack, M. (2006). Mitigation of fast ions from laser-produced Sn plasma for an extreme ultraviolet lithography source. Appl. Phys. Lett. 89, 111502.CrossRefGoogle Scholar
Ueno, Y., Soumagne, G., Sumitani, A., Endo, A., Higashiguchi, T. & Yugami, N. (2008). Reduction of debris of a CO2 laser-produced Sn plasma extreme ultraviolet source using a magnetic field. Appl. Phys. Lett. 92, 211503.Google Scholar
Wu, T., Higashiguchi, T., Li, B., Arai, G., Hara, H., Kondo, Y., Miyazaki, T., Dinh, T.-H., Dunne, P., O'Reilly, F., Sokell, E. & O'Sullivan, G. (2016). Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses. J. Phys. B: At. Mol. Opt. Phys. 49, 035001.Google Scholar
Zhenhui, H., Jianjiang, L., Haijun, D., Ziguo, D. & Qizong, Q. (1997). An angle-resolved TOF Study on the UV laser ablation of tantalum oxide. Acta Phys. Chim. Sin. 13, 140.Google Scholar