Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T13:59:55.006Z Has data issue: false hasContentIssue false

Intrinsic angular momentum of the electromagnetic field

Published online by Cambridge University Press:  09 March 2009

Deng Ximing
Affiliation:
High Power Laser and Physics Laboratory, Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, People's Republic of China

Abstract

The main point of the hydrodynamic model of the electromagnetic field (Deng Ximing & Fang Honglie 1979, 1980) is that the motion of the electromagnetic field can be divided into two parts: orbital motion and intrinsic motion. This paper defines an intrinsic angular momentum deduced from the intrinsic motion and a related Î (imaginary number) operator, whose basic properties are discussed. In addition, the conservation property of the intrinsic angular momentum and the relation between it and the spin angular momentum of the electromagnetic field are described.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, G. P. & Pattanayak, D. N. 1979 J. Opt. Soc. Am. 69, 575.CrossRefGoogle Scholar
Booker, H. G. & Clemmow, P. C. 1950 Proc. IEEE 97, 11.Google Scholar
Born, M. & Wolf, E. 1959 Principles of Optics (Pergamon, New York), p. 30.Google Scholar
Cicchitelli, L. 1988 Ph.D. thesis, University of New South Wales, Sydney, Australia.Google Scholar
Ximing, Deng & Zezun, Cheng 1983 Acta Opt. Sin. 3, 385.Google Scholar
Ximing, Deng & Honglie, Fang 1979 Chin. J. Lasers 6, 1.Google Scholar
Ximing, Deng & Honglie, Fang 1980 Chin. J. Lasers 7, 14.Google Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas (Wiley, New York), p. 230.Google Scholar
Hora, H. 1988 Laser Part. Beams 6, 625.CrossRefGoogle Scholar
Jackson, J. D. 1975 Classical Electrodynamics (Wiley, New York), p. 333.Google Scholar
Kogelnik, H. 1965 BSTJ 44, 455.Google Scholar
Kogelnik, H. 1966 Proc. IEEE 54, 1312.CrossRefGoogle Scholar
Lax, M., Louisell, W. H. & McKnight, W. B. 1975 Phys. Rev. A. 11, 1365.CrossRefGoogle Scholar
Pratesi, R. & Ronchi, L. 1977 J. Opt. Soc. Am. 67, 1274.CrossRefGoogle Scholar
Wenda, Sheng & Shitong, Zhu 1979 Private communication.Google Scholar
Siegman, A. E. 1973 J. Opt. Soc. Am. 63, 1093.CrossRefGoogle Scholar
Sokolv, A. A. 1958 Introduction to Quantum Electrodynamics, Beijing, p. 45 (in Chinese).Google Scholar
Wolf, E. 1951 Proc. R. Soc. A 204, 533.Google Scholar