Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T04:24:20.471Z Has data issue: false hasContentIssue false

Interaction of high power laser beam with magnetized plasma and THz generation

Published online by Cambridge University Press:  19 October 2010

R.P. Sharma*
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
A. Monika
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
P. Sharma
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
P. Chauhan
Affiliation:
Grupo de Laser e Plasmas, Instituto Superior Tecnico, Av. Rovisco Pais, Lisbon, Portugal
A. Ji
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India
*
Address correspondence and reprint requests to: R.P. Sharma, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India. E-mail: [email protected]

Abstract

This paper presents an investigation of the excitation of a Tera hertz (THz) radiation by nonlinear interaction of a circularly polarized high power laser beam and density ripple in collisionless magneto plasma. The ponderomotive force due to the nonlinear interaction between the laser and density ripple generates a nonlinear current at a difference frequency. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate, then this difference frequency can be brought in the THz range. Filamentation (self focusing) of a circularly polarized beam propagating along the direction of ambient magnetic field in plasma is first investigated within paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre-existing density ripple to produce a nonlinear current driving the THz radiation. Analytical expressions for the beam width of the laser beam, electric vector of the THz wave have been obtained. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. For typical laser beam and plasma parameters with the incident laser power flux = 1014 W/cm2, laser beam radius (r0) = 40 µm, laser frequency (ω0) = 1014 rad/s and plasma density (n0) = 3 × 1018 cm−3, normalized ripple density amplitude (μ) = 0.3, the produced THz emission can be at the level of Giga watt in power.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abo-Bakr, M., Feikes, J., Holldack, K., Kuske, P., Peatman, W.B., Schade, U., Wustefeld, G. & Hubers, H.-W. (2003). Brilliant, coherent far-infrared (THz) synchrotron radiation. Phys. Rev. Lett. 90, 094801.Google Scholar
Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Soviet. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Antonsen, T.M., Palastro, J. Jr. & Milchberg, H.M. (2007). Excitation of terahertz radiation by laser pulses in no uniform plasma channels. Phys. Plasmas 14, 033107.Google Scholar
Baeva, T., Gordienko, S. & Pukhov, A. (2007). Relativistic plasma control for single attosecond pulse generation: Theory, simulations and structure of the pulse. Laser Part. Beams 25, 339346.Google Scholar
Cheng, Chung-Chieh, Wright, E.M. & Moloney, J.V. (2001). Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings. Phys. Rev. Lett. 87, 213001.CrossRefGoogle ScholarPubMed
D'amico, C., Houard, A., Franco, M., Prade, B., Mysyrowicz, A., Couairon, I.A. & Tikhonchuk, V.T. (2007). Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002.Google Scholar
Dombi, P., Racz, P. & Bodi, B. (2009). Surface plasmon enhanced electron acceleration with few cycle laser pulses. Laser Part. Beams 27, 291296.Google Scholar
Dong, X.G., Sheng, Z.M., Wu, H.C., Wang, W.M. & Zhang, J. (2009). Single-cycle strong terahertz pulse generation from a vacuum-plasma interface driven by intense laser pulses. Phys. Rev. E 79, 046411CrossRefGoogle ScholarPubMed
Feruguson, B. & Zhan Ghang, X.-C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 26.Google Scholar
Gildenburg, V.B. & Vvedenskii, V.V. (2007). Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process. Phys. Rev. Lett. 98, 245002.Google Scholar
Ginzburg, V.L. (1964). The Propagation of Electromagnetic Waves in Plasmas. London: Pergamom.Google Scholar
Hamster, H., Sullivan, A., Gordon, S., White, W.& Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725.CrossRefGoogle ScholarPubMed
Kappe, P., Strasser, A. & Ostermeyer, M. (2007). Investigation of the impact of SBS-parameters and loss modulation on the mode locking of an SBS-laser oscillator. Laser Part. Beams 25, 107116.Google Scholar
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.Google Scholar
Kline, J.L., Montgomery, D.S., Rousseaux, C., Baton, S.D., Tassin, V., Hardin, R.A., Flippo, K.A., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Rose, H.A. & Amiranoff, F. (2009). Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold. Laser Part. Beams 27, 185190.Google Scholar
Mathews, J. & Walker, R.L. (1965). Mathematical Methods of Physics. New York: Benjamin.Google Scholar
Nuss, M.C. & Orenstein, J. (1997). Millimeter-Wave Spectroscopy of Solids. Heidelberg: Springer-Verlag.Google Scholar
Ozaki, T., Bom Elouga, L.B., Ganeev, R., Kieffer, J.-C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Schroeder, C.B., Esarey, E., Tilborg, J. Van, & Leemans, W.P. (2004). Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69, 016501.Google Scholar
Sharma, R.P. & Sharma, P. (2009). Effect of laser beam filamentation on second harmonic spectrum in laser plasma interaction. Laser Part. Beams 27, 157169 .Google Scholar
Shukla, P.K. & Sharma, R.P. (1982). Alfvén-wave generation in a beam-plasma system. Phys. Rev. A 25, 28162819.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self Focusing of Laser Beams in Dielectrics, Plasma and Semiconductors. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Maheshwari, K.P., Sharma, R.P. & Kaushik, S.C. (1980). Plasma wave and second harmonic generation by a Gaussian EM beam in extraordinary/ordinary mode. Proc. Indian Nat. Sci. Acad. 46, 343355.Google Scholar
Sprangle, P., Penano, J.R., Hafizi, B. & Kapetanakos, C.A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69, 066415.Google Scholar
Wu, H.C., Sheng, Z.M., Dong, Q.L., Xu, H. & Zhang, J. (2007). Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas. Phys. Rev. E 75, 016407.Google Scholar
Xie, X., Dai, J.M. & Zhang, X.C. (2006). Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005.Google Scholar
Yampolsky, N.A. & Frainman, G.M. (2006). Conversion of laser radiation to terahertz frequency waves in plasma. Phys. Plasmas 13, 113108.CrossRefGoogle Scholar
Yoshii, J., Lai, C.H., Katsouleas, T., Joshi, C. & Mori, W.B. (1997). Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79, 4194.Google Scholar
Young, P.E., Baldis, H.A., Drake, R.P., Campbell, E.M. & Estrabrook, K.G. (1988). Direct evidence of ponderomotive Filamentation in laser-produced plasma. Phys. Rev. Lett. 61, 23362339.CrossRefGoogle ScholarPubMed
Yugami, N., Ninomiya, K., Kobayashi, K. & Noda, H. (2006). Observation of millimeter range radiation with TM01 mode by laser plasma interaction experiments. Jpn. J. Appl. Phys. 45, L1051.Google Scholar