Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:18:27.077Z Has data issue: false hasContentIssue false

Interaction of heavy ion beams with dense plasmas

Published online by Cambridge University Press:  09 March 2009

C. Stöckl
Affiliation:
TH-Darmstadt, Schloßgartenstr., 7 D-64289 Darmstadt, Germany
O. Boine-Frankenheim
Affiliation:
TH-Darmstadt, Schloßgartenstr., 7 D-64289 Darmstadt, Germany
M. Roth
Affiliation:
TH-Darmstadt, Schloßgartenstr., 7 D-64289 Darmstadt, Germany
W. Süb
Affiliation:
TH-Darmstadt, Schloßgartenstr., 7 D-64289 Darmstadt, Germany
H. Wetzler
Affiliation:
TH-Darmstadt, Schloßgartenstr., 7 D-64289 Darmstadt, Germany
W. Seelig
Affiliation:
TH-Darmstadt, Schloßgartenstr., 7 D-64289 Darmstadt, Germany
M. Kulish
Affiliation:
Institute for Chemical Physics, Chernogolovka, Russia
M. Dornik
Affiliation:
GSI-Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany
W. Laux
Affiliation:
GSI-Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany
P. Spiller
Affiliation:
GSI-Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany
M. Stetter
Affiliation:
GSI-Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany
S. Stöwe
Affiliation:
GSI-Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany
J. Jacoby
Affiliation:
Universität Erlangen, Erwin-Rommel-Str. 1, D-91085 Erlangen, Germany
D.H.H. Hoffmann
Affiliation:
Universität Erlangen, Erwin-Rommel-Str. 1, D-91085 Erlangen, Germany

Abstract

The main objective of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) is the interaction processes of heavy ions with dense ionized matter. Gas discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 1019 cm-3 and 20 eV, respectively. Progress has been achieved in the understanding of charge-exchange processes in fully ionized hydrogen plasma. An improved model taking excitation-autoionization processes into account has removed most of the discrepancies of previous theoretical descriptions. Furthermore, it was found that the energy loss of the ion beam serves as an excellent diagnostic tool for measuring the electron density in partially ionized plasmas such as argon. The experience with these methods will be used in the future to diagnose dense laser produced plasmas. A setup with a 100 J/5 GW Nd:glass laser, currently under construction, will provide access to density range up to 1021 cm-3 and temperatures of more than 100 eV. To reach electron densities near solid-state density (1023 cm-3), heavy ion heated frozen rare gas crystals were used. The first hydrodynamic motion of ion heated solid material was observed. Vacuum-ultraviolet (VUV) spectroscopy was applied to diagnose these strongly coupled nonideal plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Betz, H.D. 1983 Applied Atomic Collision Physics, Vol. 4, Massey, H.S.W. et al. , eds. (Academic Press, Orlando).Google Scholar
Bock, R. 1992 Europhysics News 23, 83.CrossRefGoogle Scholar
Burgess, A. et al. 1983 Mon. Not. R. Astr. Soc. 203, 1269.CrossRefGoogle Scholar
Couillard, C. et al. 1994 Phys. Rev. E 49, 1545.CrossRefGoogle Scholar
Deutsch, C. 1993 Controlled Thermonuclear Fusion, Janev, R.K. and Dranwin, H.W., eds. (Elsevier Science Publishers, New York).Google Scholar
Dietrich, K.-G. et al. 1990a Laser Part. Beams 8, 583.CrossRefGoogle Scholar
Dietrich, K.-G. et al. 1990b Z. Phys. D 16, 229.CrossRefGoogle Scholar
Dietrich, K.-G. et al. 1992 Phys. Rev. Lett. 69, 3623.CrossRefGoogle Scholar
Griem, H.R. 1964 Plasma Spectroscopy (McGraw-Hill, New York).Google Scholar
Gryzinski, M. 1965 Phys. Rev. A 138, 305, 322, 336.CrossRefGoogle Scholar
Heimrich, B. et al. 1990 Nucl. Instr. Meth. A 294, 602.CrossRefGoogle Scholar
Hoffmann, D.H.H. 1993 Radia. Effects Defects Solids 126, 345.CrossRefGoogle Scholar
Hoffmann, D.H.H. et al. 1994 Nucl. Inst. Meth. B 90, 1.CrossRefGoogle Scholar
Jacoby, J. et al. 1989 Instr. Meth. A 278, 82.CrossRefGoogle Scholar
Jacoby, J. et al. 1995 Phys. Rev. Lett. 74, 1550.CrossRefGoogle Scholar
Kärcher, B. 1991 Dissertation, MPQ-Report 158.Google Scholar
Keefe, D. 1982 Ann. Rev. Nucl. Part. Sci. 32, 391.CrossRefGoogle Scholar
Laux, W. et al. 1995 Laser Part. Beams. 13, 183.CrossRefGoogle Scholar
Mahrt-Olt, K. et al. 1992 GSI Report, Gesellschaft für Schwerionenforschung, GSI-92–27.Google Scholar
Nahme, H. & Schwentner, N. 1990 Appl. Phys. B 51, 177.CrossRefGoogle Scholar
Peter, T. et al. 1986 Phys. Rev. Lett., 57, 1859.CrossRefGoogle Scholar
Schwentner, N. et al. 1985 Electronic Excitations in Condensed Rare Cases, Springer Tracts in Modern Physics, Volume 107 (Springer, Berlin).Google Scholar