Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T22:45:50.263Z Has data issue: false hasContentIssue false

Instabilities of a Hall plasma flowing across a magnetic field

Published online by Cambridge University Press:  09 March 2009

Liliya M. Alekseeva
Affiliation:
Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 117234, Russia

Abstract

Under certain restrictions imposed on the plasma parameters, an analytical 2D solution to the magnetohydrodynamic equations, taking into account the Hall effect [of the HMHD (Hall magnetohydrodynamic) equations], is found for the case when plasma flows across a magnetic field. This solution has the form of the sum of a rather arbitrary steady flow and a small time-dependent disturbance. We show that waves of a purely acoustic nature can propagate against the background of the flow. The magnetic field manifests itself in this process only in that it produces an effective gravity force, the “gravitational” acceleration being proportional ωeτe. Like acoustic-gravity waves in the atmosphere, such quasiacoustic-gravity (QAG) waves in a plasma increase greatly in their amplitude as they propagate “upward,” that is, in this case, to the anode of an accelerating plasma channel. The existence of a rather general dimensionless similarity criterion is also shown. It can be found directly from the structure of the HMHD equations without any restrictions as to the plasma parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseeva, L.M. 1979 Dokl. Akad. Nauk SSSR 248, 826.Google Scholar
Alekseeva, L.M. 1980 Pis'ma Zh. Tekhn. Fiz. 6, 1310 [Engl. transl.: Sov. Tech. Phys. Lett. 1980, 6, 561].Google Scholar
Alekseeva, L.M. 1989 Pis'ma Zh. Tekhn. Fiz. 15, 1. [Engl. transl.: Sov. Tech. Phys. Lett. 1989, 15, 371].Google Scholar
Alekseeva, L.M. 1990 Dokl. Akad. Nauk SSSR 310, 567. [Engl. transl: Sov. Phys. Dokl. 1990, 35, 51].Google Scholar
Alekseeva, L.M. 1991 Piśma Zh. Tekhn. Fiz. 17, 6. [Engl. transl.: Sov. Tech. Phys. Lett. 1991, 17, 461].Google Scholar
Alekseeva, L.M. 1992a Zh. Tekhn. Fiz. 62, 64. [Engl. transl.: Sov. Phys. Tech. Phys. 1992, 37, 146].Google Scholar
Alekseeva, L.M. 1992b Zh. Tekhn. Fiz. 62, 74. [Engl. transl.: Sov. Phys. Tech. Phys. 1992, 37, 152].Google Scholar
Alekseeva, L.M. 1993 Pis'ma Zh. Tekhn. Fiz. 19, 34. [Engl. transl.: Sov. Tech. Phys. Lett. 1993, 19, 145].Google Scholar
Alekseeva, L.M. 1994a Pis'ma Zh. Tekhn. Fiz. 20, 1. [Engl. transl.: Sov. Tech. Phys. Lett. 1994, 20, 175].Google Scholar
Alekseeva, L.M. 1994b Pis'ma Zh. Tekhn. Fiz. 20, 83. [Engl. transl.: Sov. Tech. Phys. Lett. 1994, 20, 511].Google Scholar
Brushlinskit, K.V. & Morozov, A.I. 1974 Voprosy teorii plazmy, Vol.8, Leontovich, M.A., ed. (Atomizdat, Moscow), p. 88. [Engl. transl.: 1980 Reviews of Plasma Physics, Vol. 8. (Consultants Bureau, New York), p. 105].Google Scholar
Brushlinskiĩ, K.V. et al. 1979 Dvumernye chislennye modeliplazmy (Two-Dimensional Numerical Models of Plasmas) (Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow), p. 7.Google Scholar
Garkusha, I.E. et al. 1992 Fizika plazmy 18, 1379.Google Scholar
Hines, C.O. 1960 Can. J. Phys. 38, 1441.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics, 6th ed. (Cambridge University Press, New York).Google Scholar
Morozov, A.I. & Shubin, A.P. 1965 Teplofiz. Vys. Temp. 3, 826.Google Scholar
Zimin, A.M. & Morozov, A.I. 1995 Fizika plazmy 21, 126.Google Scholar