Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-05T14:46:34.035Z Has data issue: false hasContentIssue false

Initial study and design on ignition ellipraum

Published online by Cambridge University Press:  20 March 2012

Ke Lan*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Dongxian Lai
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Yiqing Zhao
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Xin Li
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
*
Address correspondence and reprint requests to: Ke Lan, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-14 Beijing, 100088, People's Republic of China. E-mail: [email protected]

Abstract

An initial study and design on ignition elliptical hohlraum (ellipraum) is given by using the expended plasma-filling model with criterions. As a result, in an ellipraum with a smaller ratio of major-to-minor axis (a/b), the radius ratio of ellipraum-to-capsule (b/RC) should be larger (hence more sphere-like) to meet the criterions of plasma-filling and laser deposition, meanwhile the required laser energy and peak power are lower and the coupling between different modes is weaker. To produce a 300 eV radiation pulse to ignite a capsule of 1 mm radius, an ellipraum of a/b = 1.6 and b/Rc = 2.8 is superior to a cylinraum with a length-to-diameter ratio of 1.81 and a cylinraum-to-capsule radius ratio of 2.54 in saving more than 10% laser energy and reducing 50% coupling between different modes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Cerjan, C., Hamza, A., Hinkel, D.E., Milovich, J.L. & Robey, H.F. (2007). Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vaccum hohlraums. Phys. Plasmas 14, 056312.Google Scholar
Amendt, P., Cerjan, C., Hinkel, D.E., Milovich, J.L., Park, H.-S. & Robey, H.F. (2008). Rugby-like hohlraum experimental designs for demonstrating X-ray drive enhancement. Phys. Plasmas 15, 012702.CrossRefGoogle Scholar
Atzeni, S. & Meyer-ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford Science Press.Google Scholar
Callahan, D.A., Amendt, P., Dewald, E.L., Haan, S.W., Hinkel, D.E., Izurni, N., Jones, O.S., Landen, O.L., Lindl, J.D., Pollaine, S.M., Suter, L.J., Tabak, M. & Turner, R.E. (2006). Using laser entrance hole shields to increase coupling efficiency in indirect drive ignition targets for the National Ignition Facility. Phys. Plasmas 13, 056307.CrossRefGoogle Scholar
Callahan, D.A., Hinkel, D.E., Berger, R.L., Divol, L., Dixit, S.N., Edwards, M.J., Haan, S.W., Jones, O.S., Lindl, J.D., Meezan, N.B., Michel, P.A., Pollaine, S.M., Suter, L.J. & Town, R.P.J. (2008). Optimization of the NIF ignition point design hohlraum. J. Phys. Confer. Ser. 112, 022021.CrossRefGoogle Scholar
Caruso, A. & Strangio, C. (1991). The quality of the illumination for a spherical capsule enclosed in a radiating cavity. Jpn. J. Appl. Phys. 30, 1095.Google Scholar
Casner, A., Galmiche, D., Huser, G., Jadaud, J.-P., Liberatore, S. & Vandenboomgaerde, M. (2009). Indirect drive ablative Rayleigh–Taylor experiments with rugby hohlraums on OMEGA. Phys. Plasmas 16, 092701.CrossRefGoogle Scholar
Cavailler, C. (2005). Inertial fusion with the LMJ. Plasma Phys. Control. Fusion 47, B389B403.Google Scholar
Dawson, J., Kaw, P. & Green, B. (1969). Optical absorption and expansion of laser-produced plasmas. Phys. Fluids 12, 875.Google Scholar
Dewald, E.L., Suter, L.J., Landen, O.L., Holder, J.P., Schein, J., Lee, F.D., Campbell, K.M., Weber, F.A., Pellinen, D.G., Schneider, M.B., Celeste, J.R., McDonald, J.W., Foster, J.M., Niemann, C.J., Mackinnon, A., Glenzer, S.H., Young, B.K., Haynam, C.A., Shaw, M.J., Turner, R.E., Froula, D., Kauffman, R.L., Thomas, B.R., Atherton, L.J., Bonanno, R.E., Dixit, S.N., Eder, D.C., Holtmeier, G., Kalantar, D.H., Koniges, A.E., Macgowan, B.J., Manes, K.R., Munro, D.H., Murray, J.R., Parham, T.G., Piston, K., Van Wonterghem, B.M., Wallace, R.J., Wegner, P.J., Whitman, P.K., Hammel, B.A. & Moses, E.I. (2005). Radiation-driven hydrodynamics of high-Z hohlraums on the national ignition facility. doi: 10.1103/PhysRevLett.95.215004.Google Scholar
Feng, T.G., Lai, D.X. & Xu, Y. (1999). An artificial-scattering iteration method for calculating multi-group radiation transfer problem. Chinese J. Comput. Phys. 16, 199205.Google Scholar
Haan, S.W., Pollaine, S.M., Lindl, J.D., Suter, L.J., Berger, R.L., Powers, L.V., Alley, W.E., Amendt, P.A., Futterman, J.A., Levedahl, W.K., Rosen, M.D., Rowley, D.P., Sacks, R.A., Shestakov, A.I., Strobel, G.L., Tabak, M., Weber, S.V. & Zimmerman, G.B. (1995). Design and modelling of ignition targets for the National Ignition Facility. Phys. Plasmas 2, 1635.CrossRefGoogle Scholar
Haan, S.W., Lindl, J.D., Callahan, D.A., Clark, D.S., Salmonson, J.D., Hammel, B.A., Atherton, L.J., Cook, R.C., Edwards, M.J., Glenzer, S., Hamza, A.V., Hatchett, S.P., Herrmann, M.C., Hinkel, D.E., Ho, D.D., Huang, H., Jones, O.S., Kline, J., Kyrala, G., Landen, O.L., Macgowan, B.J., Marinak, M.M., Meyerhofer, D.D., Milovich, J.L., Moreno, K.A., Moses, E.I., Munro, D.H., Nikroo, A., Olson, R.E., Peterson, K., Pollaine, S.M., Ralph, J.E., Robey, H.F., Spears, B.K., Springer, P.T., Thomas, C.A., Town, R.P., Vesey, R., Weber, S.V., Wilkens, H.L. & Wilson, D.C. (2011). Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18, 051001.Google Scholar
Lan, K., Gu, P., Ren, G., Li, X., Wu, C., Huo, W., Lai, D. & He, X. (2010). An initial design of hohlraum driven by a shaped laser pulse. doi:10.1017/S026303461000042X.Google Scholar
Li, X., Lan, K., Meng, X., He, X., Lai, D. & Feng, T. (2010). Study on Au + U + Au Sandwich Hohlraum wall for ignition targets. doi:10.1017/S0263034609990590.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
McDonald, J.W., Suter, L.J., Landen, O.L., Foster, J.M., Celeste, J.R., Holder, J.P., Dewald, E.L., Schneider, M.B., Hinkel, D.E., Kauffman, R.L., Atherton, L.J., Bonanno, R.E., Dixit, S.N., Eder, D.C., Haynam, C.A., Kalantar, D.H., Koniges, A.E., Lee, F.D., Macgowan, B.J., Manes, K.R., Munro, D.H., Murray, J.R., Shaw, M.J., Stevenson, R.M., Parham, T.G., Van Wonterghem, B.M., Wallace, R.J., Wegner, P.J., Whitman, P.K., Young, B.K., Hammel, B.A. & Moses, E.I. (2006). Hard X-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility. doi: 10.1063/1.2186927.Google Scholar
Philippe, F., Casner, A., Caillaud, T., Landoas, O., Monteil, M.C., Liberatore, S., Park, H.S., Amendt, P., Robey, H. & Sorce, C. (2010). Experimental Demonstration of X-ray Drive Enhancement with Rugby-Shaped Hohlraums. Phys. Rev. Lett. 104, 035004.CrossRefGoogle ScholarPubMed
Robey, H.F., Amendt, P., Park, H.-S., Town, R.P.J., Milovich, J.L., Döppner, T., Hinkel, D.E., Wallace, R., Sorce, C., Strozzi, D.J., Phillippe, F., Casner, A., Caillaud, T., Landoas, O., Liberatore, S., Monteil, M.-C., Séguin, F., Rosenberg, M., Li, C.K., Petrasso, R., Glebov, V., Stoeckl, C., Nikroo, A. & Giraldez, E. (2010). High performance capsule implosions on the OMEGA laser facility with rugby hohlraums. Phys. Plasmas 17, 056313.CrossRefGoogle Scholar
Rosen, M.D., Scott, H.A., Hinkel, D.E., Williams, E.A., Callahan, D.A., Town, R.P.J., Divol, L., Michel, P.A., Kruer, W.L., Suter, L.J., London, R.A., Harte, J.A. & Zimmerman, G.B. (2011). The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums. Hi. Ener. Density Phys. 7, 180.Google Scholar
Schneider, M.B., Hinkel, D.E., Landen, O.L., Froula, D.H., Heeter, R.F., Langdon, A.B., May, M.J., McDonald, J., Ross, J.S., Singh, M.S., Suter, L.J., Widmann, K. & Young, B.K. (2006). Plasma filling in reduced-scale hohlraums irradiated with multiple beam cones. doi: 10.1063/1.2370697.Google Scholar
Sigel, R., Pakula, R., Sakabe, S. & Tsakiris, G.D. (1988). X-ray generation in a cavity heated by 1.3 or 0.44 mm laser light III Comparison of the experimental results with theoretical predictions for X-ray confinement. Phys. Rev. A 38, 5779.Google Scholar
Suter, L.J. (1985). Cross talk between modes in cylindrical hohlraums. Laser Program Annual Report 1985, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-85, pp. 3031.Google Scholar
Vandenboomgaerde, M., Bastian, J., Casner, A., Galmiche, D., Jadaud, J.-P., Laffite, S., Liberatore, S., Malinie, G. & Philippe, F. (2007). Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion. doi: 10.1103/PhysRevLett.99.065004.CrossRefGoogle Scholar