Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T12:02:25.930Z Has data issue: false hasContentIssue false

Influence of target plasma nuclei collisions on correlated motion of fragmented H2+ protons

Published online by Cambridge University Press:  08 June 2006

MANUEL D. BARRIGA-CARRASCO
Affiliation:
E. T. S. I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain

Abstract

The aim of this paper is to describe the influence of target plasma nuclei on the correlated motion of H2+ protons traversing classical plasma matter. Electronic stopping of the protons pair is treated by means of the dielectric formalism, while nuclear collisions are dealt within the classical dispersion theory through a Monte Carlo method. It is shown that vicinage electronic forces screen Coulomb repulsion between the two protons from H2+ ion decelerating the increase of their relative distance. Vicinage forces also align the interproton vector along the motion direction. However, proton interactions with plasma nuclei mask most of these vicinage effects. These nuclear collisions hide the screening effect produced by the vicinage forces, increasing the proton relative distance even faster than for bare Coulomb repulsion. The interproton vector along motion direction is also misaligned due to nuclear collisions. Nuclear collisions effects are more significant in reducing projectile velocity. In particular, all these effects are studied in a deuterium (D) plasma with temperature Te = 10 eV and electronic density n = 1023 cm−3.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arista, N.R. (2000). Stopping of molecules and clusters. Nucl. Instr. Meth. B 164–165, 108130.Google Scholar
Barriga-Carrasco, M.D. & Garcia-Molina, R. (2003). Vicinage forces between molecular and atomic fragments dissociated from small hydrogen clusters and their effects on energy distributions. Phys. Rev. A 68, 062902 (8).Google Scholar
Barriga-Carrasco, M.D. & Garcia-Molina, R. (2004). Simulation of the energy spectra of original versus recombined H2+ molecular ions transmitted through thin foils. Phys. Rev. A 70, 032901 (8).Google Scholar
Barriga-Carrasco, M.D., Maynard, G. & Kurilenkov, Yu. (2004). Influence of transverse diffusion within the proton beam fast ignitor scenario. Phys. Rev. E 70, 066407 (9).Google Scholar
Barriga-Carrasco, M.D. & Maynard, G. (2005). A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets. Laser Part. Beams 23, 211217.Google Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi O., MacKinnon, A.J., Gizzi, L.A., Galimberti, M., Clarke, R.J., &Ruhl, H. (2001). Proton imaging: A diagnostic for inertial confinement fusion/fast ignitor studies. Plasma Phys. Control. Fusion 43, A267276.Google Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291.Google Scholar
Breschi, E., Borghesi, M., Galimberti, M., Giulietti, D., Gizzi, L.A., Romagnani, G., Schiavi, A. & Willi, O. (2004). Spectral and angular characterization of laser-produced proton beams from dosimetric measurements. Laser Part. Beams 22, 393397.Google Scholar
Deutsch, C. (1990). Interaction of ion cluster beams with cold matter and dense-plasmas. Laser Part. Beams 8, 541553.Google Scholar
Deutsch, C. (1992). Ion cluster interaction with cold targets for ICF—Fragmentation and stopping. Laser Part. Beams 10, 217226.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Eliezer, S., MartinezVal, J.M. & Deutsch, C. (1995). Inertial fusion-targets driven by cluster ion-beam: The hydrodynamic approach. Laser Part. Beams 13, 4369.Google Scholar
Garcia-Molina, R. & Barriga-Carrasco, M.D. (2003). Simulation of the molecular recombination yield for swift H2+ ions through thin carbon foils. Phys. Rev. A 68, 054901 (4).Google Scholar
Goldstein, H. (1980). Classical Mechanics. Reading, MA: Addison-Wesley.
King, N.S.P., Ables, E., Adams, Ken, Alrick, K.R., Amann, J.F., Balzar, S., Barnes Jr., P.D., Crow, M.L., Cushing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., London, R.K., Lopez, R.R., McDonald, T.E., McClelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillai, C., Riedel, C.M., Sarracino, J.S., Shelley Jr., F.E., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J. & Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instr. Meth. A 424, 8491.Google Scholar
Maynard, G., Deutsch, C., Dimitriou, K., Katsonis, K. & Sarrazin, M. (2002). Evaluation of the energy deposition profile for swift heavy ions in dense plasmas. Nucl. Instr. Meth. B 195, 188215.Google Scholar
Möller, W., Pospiech, G. & Schrieder, G. (1975). Multiple scattering calculations on ions passing through thin amorphous foils. Nucl. Instr. Meth. 130, 265270.Google Scholar
Neufeld, J. & Ritchie, R. H. (1955). Passage of charged particles through plasma. Phys. Rev. 98, 16321642.Google Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrasfast proton beam. Phys. Rev. Lett. 91, 125004 (4).Google Scholar
Peter, Th. & Meyer-ter-Vehn, J. (1991). Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Roth, M., Cowan, T. E., Key, M. H., Hatchett, S. P., Brown, C., Fountain, W., Johnson, J., Pennington, D. M., Snavely, R. A., Wilks, S. C., Yasuike, K., Ruhl, K., Pegoraro, F., Bulanov, S.V., Campbell, E. M., Perry, M. D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Tahir, N.A., Lutz, K.J., Geb, O., Maruhn, J.A., Deutsch, C. & Hoffmann, D.H.H. (1997). Inertial confinement fusion using hohlraum radiation generated by heavy-ion clusters. Phys. Plasmas 4, 796816.Google Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1995). Stopping power of heavy ions in strongly coupled plasmas. Laser Part. Beams 13, 311319.Google Scholar
Zwicknagel, G. & Deutsch, C. (1996). Basic features of correlated ion stopping in plasmas. Laser Part. Beams 14, 749763.Google Scholar