Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T19:30:00.207Z Has data issue: false hasContentIssue false

Influence of target curvature on ion acceleration in radiation pressure acceleration regime

Published online by Cambridge University Press:  17 March 2015

Deepak Dahiya
Affiliation:
Physics Department, IIT Delhi, New Delhi, India
Ashok Kumar*
Affiliation:
Physics Department, AIAS, Amity University, Noida, India
V. K. Tripathi
Affiliation:
Physics Department, IIT Delhi, New Delhi, India
*
Address correspondence and reprint requests to: Ashok Kumar, Physics Department, AIAS, Amity University, Noida, Noida-201303, U. P., India. E-mail: [email protected]

Abstract

Ion acceleration from submicron thick foil target irradiated by a circularly polarized laser is studied using multidimensional particle-in-cell simulations. Convex, flat, and concave target shapes are considered. Radius of curvature of curved target is of the order of laser width in transverse direction. Accelerated ion beam of highest peak energy and least energy spread is obtained from concave target, whereas total accelerated charge is highest in convex target. It is attributed to the change in the growth of transverse instabilities and geometrical effects due to target curvature in initial stages of acceleration process. The variation in the radius of curvature of the foil depends on the ratio of initial spot size to the radius of curvature. Faster reduction in curvature is achieved for tightly focused Gaussian pulses as conjectured by the model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmad, R., Rafique, M.S., Tahir, M.B. & Malik, H. (2014). Implantation of various energy metallic ions on al substrate using a table top laser driven ion source. Laser Part. Beams 32, 261270.CrossRefGoogle Scholar
Akram, M., Bashir, S., Hayat, A., Mahmood, K., Ahmad, R. & Khaleeq-U-rahaman, M. (2014). Effect of laser irradiance on the surface morphology and laser induced plasma parameters of zinc. Laser Part. Beams 32, 119128.CrossRefGoogle Scholar
Andreev, A., Platonov, K. & Kawata, S. (2009). Ion acceleration by short high intensity laser pulse in small target sets. Laser Part. Beams 27, 449457.CrossRefGoogle Scholar
Bagchi, S., Kiran, P.P. & Bhuyan, M.K. (2008). Hotter electrons and ions from nano-structured surfaces. Laser Part. Beams 26, 259264.CrossRefGoogle Scholar
Bin, J.H. (2009). Influence of the target front-surface curvature on proton acceleration in laser-foil interaction. Phys. Plasmas 16, 043109.CrossRefGoogle Scholar
Borghesi, M. (2004). Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055003.CrossRefGoogle ScholarPubMed
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G. & Willi, O. (2002). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 2214.CrossRefGoogle Scholar
Brady, C.S. & Arber, T.D. (2011). Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Plasma Phys. Control. Fusion 53, 015001.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T.Z., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240.CrossRefGoogle Scholar
Chen, M., Pukhov, A., Sheng, Z.M. & Yan, X.Q. (2008). Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets. Phys. Plasmas 15, 113103.CrossRefGoogle Scholar
Clark, E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670.CrossRefGoogle ScholarPubMed
Eliasson, B., Liu, C.S., Shao, X., Sagdeev, R.Z. & Shukla, P.K. (2009). Laser acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil. New J. Phys. 11, 073006.CrossRefGoogle Scholar
Fourkal, E., Velchev, I., Fan, J., Luo, W. & Maet, C.M. (2007). Energy optimization procedure for treatment planning with laser-accelerated protons. Med. Phys. 34, 577.CrossRefGoogle ScholarPubMed
Gibbon, P. (2005). Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets. Phys. Rev. E 72, 026411.CrossRefGoogle ScholarPubMed
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.CrossRefGoogle ScholarPubMed
Jablonski, S., Badziak, S. & Raczka, P. (2014). Generation of high-energy ion bunches via laser-induced cavity pressure acceleration at ultra-high laser intensities. Laser Part. Beams 32, 129135.CrossRefGoogle Scholar
Jain, V., Maheshwari, K.P., Jaiman, N.K. & Malav, H. (2013). Non-linear interaction of ultra-intense ultra-short laser pulse with a relativistic flying double-sided dense plasma slab/mirror. Laser Part. Beams 32, 253260.CrossRefGoogle Scholar
Kim, I.J., Pae, K.H., Kim, C.M., Kim, H.T., Sung, J.H., Lee, S.K., Yu, T.J., Choi, I.W., Lee, C.L., Nam, K.H., Nickles, P.V., Jeong, T.M. & Lee, J. (2013). Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses. Phys. Rev. Lett. 111, 165003.CrossRefGoogle ScholarPubMed
Kumar, M., Singh, R. & Verma, U. (2014). Bremsstrahlung soft X-ray emission from clusters heated by a Gaussian laser beam. Laser Part. Beams 32, 914.CrossRefGoogle Scholar
Lee, H.J., Pae, K.H., Suk, H. & Hahn, S.J. (2004). Enhancement of high-energy ion generation by preplasmas in the interaction of an intense laser pulse with overdense plasmas. Phys. Plasmas 11, 1726.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Macchi, A., Sgattoni, A., Sinigardi, S., Borghesi, M. & Passoni, M. (2013). Advanced strategies for ion acceleration using high power lasers. Plasma Phys. Contr. Fusion 55, 124020.CrossRefGoogle Scholar
Macchi, A., Veghini, S. & Pegoraro, F. (2009). Light sail acceleration reexamined. Phys. Rev. Lett. 103, 085003.CrossRefGoogle ScholarPubMed
Nieter, C. & Cary, J.R. (2004). VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 448.CrossRefGoogle Scholar
Palmer, C.A.J., Schreiber, J., Nagel, S.R., Dover, N.P., Bellei, C., Beg, F.N., Bott, S., Clarke, R.J., Dangor, A.E., Hassan, S.M., Hilz, P., Jung, D., Kneip, S., Mangles, S.P.D., Lancaster, K.L., Rehman, A., Robinson, A.P.L., Spindloe, C., Szerypo, J., Tatarakis, M., Yeung, M., Zepf, M. & Najmudin, Z. (2012). Phys. Rev. Lett. 108, 225002.CrossRefGoogle Scholar
Patel, P. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Pegoraro, F. & Bulanov, S.V. (2007). Photon bubbles and ion acceleration in plasma dominated by the radiation pressure of an electromagnetic pulse. Phys. Rev. Lett. 99, 065002.CrossRefGoogle ScholarPubMed
Psikal, J., Tikhonchuk, V.T., Limpouch, J., Andreev, A.A. & Brantov, A.V. (2008). Ion acceleration by femtosecond laser pulses in small multispecies targets. Phys. Plasmas 15, 053102.CrossRefGoogle Scholar
Qiao, B., Zepf, M., Borghesi, M. & Geissler, M. (2009). Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002.CrossRefGoogle ScholarPubMed
Regam, C. (2011). Cone-guided fast ignition with ponderomotively accelerated carbon ions. Plasma Phys. Control. Fusion 53, 045014.CrossRefGoogle Scholar
Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2009). Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Control. Fusion 51, 024004.CrossRefGoogle Scholar
Roth, M. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasmas 11, 3083.CrossRefGoogle Scholar
Shoucri, M., Afeyan, B. & Lefort, M.C. (2008). Numerical simulation for ion acceleration in an intense laser wave incident on overdense plasma. J. Phys. D: Appl. Phys. 41, 215205.CrossRefGoogle Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Mori, W.B. & Dawson, J.M. (2002). On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 2458.CrossRefGoogle Scholar
Spencer, I., Ledingham, K.W.D., Singhal, R.P., Mccanny, T., Mckenna, P., Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Dangor, A.E., Norreys, P.A., Clarke, R.J., Allott, R.M. & Ross, I.N. (2001). Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Inst. Methods Phys. Res. B 183, 449.CrossRefGoogle Scholar
Temporal, M., Ramis, R., Honrubia, J.J. & Atzeni, S. (2009). Fast ignitions induced by shocks generated by laser-accelerated proton beams. Plasma Phys. Control. Fusion 51, 035010.CrossRefGoogle Scholar
Tripathi, V.K., Liu, C.S., Shao, X., Eliasson, B. & Sagdeev, R.Z. (2009). Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil. Plasma Phys. Control. Fusion 51, 024014.CrossRefGoogle Scholar
Trtica, M., Batani, D., Redaelli, R., Limpouch, J., Kmetik, V., Ciganovic, J., Stasic, J., Gakovic, B. & MOMCILOVIC, M. (2013). Titanium surface modification using femtosecond laser with 10131015 W/cm2 intensity in vacuum. Laser Part. Beams 31, 2936.CrossRefGoogle Scholar
Yan, X.Q., Chen, M., Sheng, Z.M. & Chen, J.E. (2009). Self-induced magnetic focusing of proton beams by Weibel-like instability in the laser foil-plasma interactions. Phys. Plasmas 16, 044501.CrossRefGoogle Scholar