Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T04:20:18.505Z Has data issue: false hasContentIssue false

Improved equation of state of metals in the liquid-vapor region

Published online by Cambridge University Press:  21 September 2006

A. RAY
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India
M.K. SRIVASTAVA
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India
G. KONDAYYA
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India
S.V.G. MENON
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Center, Mumbal, India

Abstract

The existing “quotidian equation state” model, based on Thomas-Fermi theory, is modified so as to improve the low density region of phase diagram of metals. A scheme for estimating the critical parameters of liquid-vapor phase transition is proposed. The new model reproduces experimental critical isotherms to a good degree of accuracy. Furthermore, the proposed model is validated with thermodynamic data in the liquid-vapor co-existence region, including results on isobaric expansion as well as released isentropes.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Jr. (1984). Users manual for GRIZZLY. Report No. LA-10244-M. Los Alamos, NM: Los Alamos National Laboratory.
Al'tshuler, L.V., Bushmann, A.V., Zhernokletov, M.V., Zubarev, V.N., Leont'ev, A.A. & Fortov, V.E. (1980). Unloading isentropes of the equation of state of metals at high energy densities. Sov. Phys. JETP 51, 373.
Barnes, J.F. (1967). Statistical atom theory and the equation state of solids. Phys. Rev. 153, 269.
Bushmann, A.V. & Fortov, V.E. (1983). Equation of state models for matter. Sov. Phys. Usp. 26, 465.
Bushmann, A.V., Lomonosov, I.V. & Fortov, V.E. (1993). Sov. Tech. Rev. B. Therm. Rev. 5, 1.
Carnahan, N.F. & Starling, K.E. (1969). Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635.
Dillon, I.G., Nelson, P.A. & Swanson, B.S. (1966). Measurement of densities and estimation of critical properties of the alkali metals. J. Chem. Phys. 44, 4229.
Elieser, S., Ghatak, A.K. & Hora, H. (1986). An Introduction to Equations of state: Theory and Applications. Cambridge, UK: Cambridge University Press.
Feynman, R.P., Metropolis, N. & Teller, E. (1949). Equation of state of elements based on the generalized Fermi-Thomas theory. Phys. Rev. 75, 1561.
Fortov, V.E. & Yakubov, L.T. (1999). Physics of Non-Ideal Plasmas. London, UK: World Scientific.
Fucke, U. & Seydel, W. (1980). Improved experimental determination of critical-point data for tungsten. High Temp. High Pressures 12, 419.
Gathers, G.R. (1983a). Thermophysical properties of liquid copper and aluminum. Int. J. Thermophys. 4, 209.
Gathers, G.R. (1983b). Correction of specific heat in isobaric expansion data. Int. J. Thermophys. 4, 149.
Gathers, G.R. (1986). Dynamic methods for investigating thermophysical properties of matter at very high temperature and pressures. Rep. Prog. Phys. 49, 341.
Gruneisen, E. (1912). Theorie des festen zustandes einatomiger element. Ann Phys 12, 257.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 47.
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 3651.
Hoover, W.G., Stell, G., Goldmark, E. & Degani, G.D. (1975). Generalized van der Waals equation of state. J. Chem. Phys. 63, 5434.
Hornung, K. (1975). Liquid metal coexistence properties from corresponding states and third law. J. Appl. Phys. 46, 2548.
Jing, D.Yi., Tiu-Tung, Y. & Li-Rong, C. (1984). A new relationship for the melting point, the boiling point and the critical point of metallic elements. J. Phys. F: Metal. Phys. 14, L141.
Kerley, G.I. (1991). Users manual for PANDA II: A computer code for calculating equations of state. Report No. SAND88-2291. Albuquerque, NM: Sandia National Laboratories.
Kittel, C. (1971). Introduction to Solid State Physics. New Delhi: Wiley.
Lang, G. (1995). CRC Handbook of Chemistry and Physics (Lide, D.D., Ed.), Vol. 4, p. 126. Boca Raton, FL: CRC Press.
McCloskey, D.J. (1964). An analytic formulation of equations of state. Report No. RM-3905-PR. Rand Corporation.
More, R.M., Warrren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation state (QEOS) for hot dense matter. Phys. Fluids 31, 3059.
Morris, E. (1964). An application of the theory of corresponding states to the prediction of the critical constants of metal. Report No. 067/64. London, UK: AWRE.
Novikov, I.I. (1965). Remarks on I.I. Novikov's calculation of the critical temperature of the alkali metals. J. Inorg. Nucl. Chem. 27, 1171.
Partington, J.R. (1949). An Advanced Treatise on Physical Chemistry. London, UK: Longmans.
Ross, M. (1985). Matter under extreme condition of temperature and pressure. Rep. Progr. Phys. 48, 1.
Seydel, U., Bauhof, H., Fucke, W. & Wadle, H. (1979). Thermophysical data for various transition metals at high temperatures obtained by a submicrosecond-pulse-heating method. High Temp. High Pressures 11, 635.
Shaner, J.W., Gathers, G.R. & Hodgson, W.M. (1977). Proc. 7th Symp on Thermophysical Properties, p. 896. New York: ASME.
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005a). Impact of 7-TeV/c large hadron collider proton beam on a copper target. J. Appl. Phys. 97, 08332.
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005b). The CERN large hadron collider as a tool to study high-energy density matter. Phys. Rev. Lett. 94, 135004.
Temporal, M., Cela, J.J.L., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137.
Young, D.A. & Alder, B.J. (1971). Critical point of metals from the van der Waals model. Phys. Rev. 3, 364.
Young, D.A. (1977). A soft-sphere model for liquid metals. Report No. UCRL-52352. Berkley, CA: Lawrence Livermore Laboratory.
Young, D.A. & Corey, E.M. (1995). A new global equation of state model for hot dense matter. J. Appl. Phys. 78, 3748.
Zhernokletov, M.V., Zubarev, V.N. & Sutulov, Yu.N. (1984). Adiabats of porous samples and expansion iseotropes of copper. J. Appl. Mech. Techn. Phys. 25, 107110.
Zhernokletov, M.V., Simakov, G.V., Sutulov, Yu.N. & Trunin, R.F. (1995). Unload isentropes of aluminum, iron, molybdenum, lead and tantalum. Teplofiz. Vys. Tmp. 33, 40.