Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T01:27:41.889Z Has data issue: false hasContentIssue false

Implosion symmetry of laser-irradiated cylindrical targets

Published online by Cambridge University Press:  22 April 2008

R. Ramis*
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain
J. Ramírez
Affiliation:
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain
G. Schurtz
Affiliation:
CELIA, Université Bordeaux, Bordeaux, France
*
Address correspondence and reprint requests to: R. Ramis, E.T.S.I. Aeronáuticos, P. Cardenal Cisneros 3, 28010 Madrid, Spain. E-mail: [email protected]

Abstract

We consider the symmetry of cylindrical implosions of laser targets with parameters corresponding to experiments proposed for the LIL laser facility at Bordeaux: eight laser beams in octahedrical configuration, delivering a total of 50 kJ of 0.35 µm laser light in 5 ns, impinging on 1.26 mm diameter polystyrene cylindrical shells filled with deuterium at 30 bar and 5.35 mg cm−3; this configuration allows to place diagnostics along the symmetry axis to evaluate directly the uniformity of implosion. Numerical studies have been carried out by using the hydrodynamic computer codes MULTI and CHIC, including one-dimensional, and two-dimensional RZ and R–θ simulations. Deuterium is compressed into a 1 mm long and 50 µm diameter filament, with density ranging from 2 to 6 g cm−3 and temperatures above 1000 eV. In spite of the reduced numbers of beams, a good symmetry can be achieved with a careful choice of the irradiation pattern. The heat transport smoothing between laser absorption zone and ablation layer plays a fundamental role in the attenuation of residual non-uniformities. Also, it has been found that the radiation transport determines the radial structure of the compressed filament.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R., Breil, J., Maire, P.H. & Ovadia, J. (2004). Un Schéma centré pour l'hydro-dynamique Lagrange bidimensionelle. Report LRC-04-10. Bordeaux, France: Université de Bordeaux 1.Google Scholar
Barnes, C.W., Batha, S.H., Dunne, A.M., Magelssen, G.R., Rothman, S., Day, R.D., Elliott, N.E., Haynes, D.A., Holmes, R.L., Scott, J.M., Tubbs, D.L., Youngs, D.L., Boehly, T.R. & Jaanimagi, P. (2002). Observation of mix in a compressible plasma in a convergent cylindrical geometry. Phys. Plasmas 9, 44314434.CrossRefGoogle Scholar
Batani, D., Dezulian, R.Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T., & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Bell, G.I. (1951). Taylor instability on cylinders and spheres in the small amplitude approximation. Technical Report LA-1321. Los Alamos National Laboratory.Google Scholar
Blanchot, N., Bignon, E., Coïc, H., Cotel, A., Couturier, E., Deschaseaux, G., Forget, N., Freysz, E., Hugonnot, E., Le Blanc, C., Loustalet, N., Luce, J., Marre, G., Migus, A., Montant, S., Mousset, S., Noailles, S., Néauport, J., Rouyer, C., Rullière, C., Sauteret, C., Videau, L. & Vivini, P. (2005). Multi - Petawatt High Energy Laser Project on the LIL Facility in Aquitaine. Topical Problems of Non-linear Wave Physics (Sergeev, A., Ed.), Proc. SPIE 5975, 30.Google Scholar
Duderstadt, J.J. & Moses, G.A. (1982). Inertial Confinement Fusion, New York: John Wiley & Sons.Google Scholar
Dunne, M. (2006). A high-power laser fusion facility for Europe. Nature Physics 2, 25.CrossRefGoogle Scholar
Eidmann, K. (1994). Radiation transport and atomic physics modelling in high-energy density laser-produced plasmas. Laser Part. Beams 12, 223244.CrossRefGoogle Scholar
Eliezer, S., Murakami, M. & Martinez Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C.J. (2004). Postponement of saturation of the Richtmyer-Meshkov instability in a convergent geometry. Phys. Rev. Lett. 93, 115003-1-4.CrossRefGoogle Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C.J. (2005). Effect of convergence on growth of the Richtmyer-Meshkov instability. Laser Part. Beams 23, 2125.CrossRefGoogle Scholar
Garban-Labaune, C., Fabre, E., Max, C.E., Fabbro, R., Amiranoff, F., Virmont, J., Weinfeld, M. & Michard, A. (1982). Effect of laser wavelength and pulse duration on laser-light absorption and back reflection. Phys. Rev. Lett. 48, 10181021.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K., & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Honrubia, J.J. & Meyer-ter-Vehn, J. (2006). Three-dimensional fast electron transport for ignition-scale inertial fusion capsules. Nucl. Fusion 46, L25L28.CrossRefGoogle Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser Part. Beams 24, 455463.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hsing, W.W. & Hoffman, N.M. (1997). Measurement of feedthrough and instability growth in radiation-driven cylindrical implosions. Phys. Rev. Lett. 78, 38763879.CrossRefGoogle Scholar
Hsing, W.W., Barnes, C.W., Beck, J.B., Hoffman, N.M., Galmiche, D., Richard, A., Edwards, J., Graham, P., Rothman, S. & Thomas, B. (1997). Rayleigh-Taylor instability evolution in ablatively driven cylindrical implosions. Phys. Plasmas 4, 18321840.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic Simulation for FIREX Project with FI3. Laser Part. Beams 25, 621629.CrossRefGoogle Scholar
Keskinen, M.J. & Schmitt, A. (2007). Nonlocal electron heat flow in high-Z laser-plasmas with radiation transport. Laser Part. Beams 25, 333337.CrossRefGoogle Scholar
Kovacs, F. (2002). LIL: status and commissioning. Proc. Inertial Fusion Sciences and Applications 2001 (Tanaka, K.A., Meyerhofer, D.D. and Meyer-ter-Vehn, J., Eds.) pp. 484489. Paris: Elsevier.Google Scholar
Lanier, N.E., Barnes, C.W., Batha, S. H., Day, R.D., Magelssen, G.R., Scott, J.M., Dunne, A.M., Parker, K.W. & Rothman, S.D. (2003). Multimode seeded Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma system. Phys. Plasmas, 10, 18161821.CrossRefGoogle Scholar
Manheimer, W. & Colombant, D. (2007). Effects of viscosity in modeling laser fusion implosions. Laser Part. Beams 25, 541547.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Parker, K., Horsfield, C.J., Rothman, S.D., Batha, S.H., Balkey, M.M., Delamater, N.D., Fincke, J.R., Hueckstaedt, R.M., Lanier, N.E. & Mageissen, G.R. (2004). Observation and simulation of plasma mix after reshock in a convergent geometry. Phys. Plasmas 11, 26962701.CrossRefGoogle Scholar
Plesset, M.S. (1954). On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.CrossRefGoogle Scholar
Ramis, R. & Sanmartín, J.R. (1983). Electron temperature versus laser intensity times wavelength squared: a comparison of theory and experiments. Nucl. Fusion 23, 739749.CrossRefGoogle Scholar
Ramis, R., Schmaltz, R. & Meyer-Ter-Vehn, J. (1988). MULTI - A computer code for one-dimensional multigroup radiation hydrodynamics. Comp. Phys. Comm. 49, 475505.CrossRefGoogle Scholar
Ramis, R. & Ramírez, J. (2004). Indirectly driven target design for fast ignition with proton beams. Nucl. Fusion 44, 720730.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Schurtz, G. (2004). FCI par attaque directe. Utilisation de la LIL en configuration éclatée ou LIL 6 + 2. Report. Talence, France: Université de Bordeaux 1.Google Scholar
Schurtz, G., Gary, S., Hulin, S., Chenais-Popovics, C., Gauthier, J.C., Thais, F., Breil, J., Durut, F., Feugeas, J.L., Maire, P.H., Nicolaï, P., Peyrusse, O., Reverdin, C., Soullié, G., Tikhonchuk, V., Villette, B. & Fourment, C. (2007). Revisiting Nonlocal Electron-Energy Transport in Inertial-Fusion Conditions. Phys. Rew. Lett. 98, 095002.Google ScholarPubMed
Sesame. (1983). Report on the Los Alamos Equation-of-State Library. T-4 group. Report LALP-83-4. Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and gain with ultrapowerful lasers. Phys. Plasmas 2, 16261634.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.CrossRefGoogle Scholar
Tubbs, D.L., Barnes, C.W., Beck, J.B., Hoffman, N.M., Oertel, J.A., Watt, R.G., Boehly, T., Bradley, D. & Knauer, J. (1999 a). Direct-drive cylindrical implosion experiments: simulation and data. Laser Part. Beams 17, 437449.CrossRefGoogle Scholar
Tubbs, D.L., Barnes, C.W., Beck, J.B., Hoffman, N.M., Oertel, J.A. & Watt, R.G. (1999 b). Cylindrical implosion experiments using laser direct drive. Phys. Plasmas 6, 20952104.CrossRefGoogle Scholar
Weber, S., Maire, P.H., Loubere, R., Riazuelo, G., Michel, P., Tikhonchuk, V. & Ovadia, J. (2005). A transport simulation code for inertial confinement fusion relevant laser-plasma interaction. Comp. Phys. Comm. 168, 141158.CrossRefGoogle Scholar